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This thesis is concerned with the development of the structural
form of optimum linear detection operators when the pulse waveform and
neise parameters are unknown and are to be obtained by mixture resolving
estimation; and with the development of the mixture resclving estimators
to learn or extract this parametric information from the noisy signal
pattern mixture, in order to obtain the elements for the structure. The
Observation signal model consists of a discrete, multidimensional,
binary (two category) gaussian mixture.

An eigenvalue approach is taken for the development of the struc-
tural form of the detection operator; the criterion of optimality being
the minimum average conditional probability of error at the Nth stage,
conditioned upon the mixture resoclving estimating category. The mixture
resolving categories developed consist of an optimized, time-varying-
welghted decision-directed category and a moment method category. These
categories differ from related work in that; (1) In the former, the
initial reference is extracted from the signal mixture by correlating
the first observation with the next and updating the result with
successive-time-varying-weighted combinations of the separated time slots
optimized to minimize a measure of distance and dispersion with a sub-
sequent "maximization' of convergence rate and (2) in the latter, no
apriori knowledge of either the pulse waveform or noise parameters is

required.




viii

Extensive experimental studies, via digital computer simulation, of
the performance characteristics of these signal processing algorithms
are carried out and compared with the conventional decision directed and
Bayes matched filter algorithms under identical input conditions. A
complete formulation of this approach, to include verification of the
theory by digital computer simulation experimentation, however, is
carried out only for the bi-polar case (8, = -91) in the equiprobable
situation (pl =P, = %). An analysis for the general case is carried
out and the difficulties encountered by the lack of specific apriori
information are discussed.

Both algorithms developed in this work converge for negative db.
values of SNR at a rate considerably higher than that of the conventional
decision-directed algorithm and are bounded from above in performance
by the conventional decision-directed algorithm over the entire SNR
range investigated. In addition, the weighting in the optimized-
weighted-decision directed ("rate maximized") algorithm, over the SNR
range investigated, is dominated only by the observation stage, N, and
the constraint coefficient, y; and, in that sense, is non-parametric in
the mixture pulse waveform and noise parameters. A signal processing
interpretation of the digital computer simulation of the numerical
experimentation implies that knowledge of the required signal dimension-

ality is available.




CHAPTER I

INTRODUCTION

1-1. Introduction to the Problem of Mixture Resolving Signal Processing

This thesis is concerned with the problem of developing and opti-
mizing, in a specific manner, mixture resolving signal processing struc-
tures. The problem is formulated with the signal processing structure
fundamentally process detection or classification oriented as opposed to
a process extraction or recovery orientation.

The model of the observation signal consists of a formal mixture
and thus assumes no pre-classification of time slots into isolated class
or category ensembles. The work in this thesis is based upon a multi-
dimensional, binary, gaussian mixture.

Strict mixture resolving signal processing implies detection or
classification without any apriori knowledge of the signal and noise
pattern properties. The formulation of the problem in this work assumes
certain specific relationships between the mixing parameters (probabil-
ities of the two classes in the mixture) and the location parameters
(mean vectors of the two gaussian classes). These assumptions are pointed
out in detail in Section 1-k.

In general, this problem in a detection context, requires some

integrated operation of time slot classification and extraction of the




information required for this time slot classification. In drawing an
analogy with the signal detection problem, it is seen that the require-
ment is an integration of the operation of the classification of a noisy
pulse waveform with the extraction of the pulse and noise parameters for
this classification. This problem is common to all areas of active and
passive radar, sonar, seismology; active communication systems and bio-
electric signal analysis, in that, in these areas, rarely are there ever
available complete apriori deterministic and statistical descriptions of
the characteristics of the electro-magnetic, acoustic, and electro-

chemical channels, cross-sections, and information obscuring processes.

1-2. Summary of Literature Review

A literature review of detection oriented work in the adaptive and
learning system areas and in mixture technology has resulted in the
following findings. The problems have generally been defined in a
discrete sense assuming a scalar or vector sequence of samples, {Ek}N’“Of
a signal mixture, as a model for the observations. The approaches taken
have been generally conventional minimum conditional risk formulated

giving rise to a conditional likelihood ratio, &(z

—N+l|{5k}N)’ with the
likelihood for the ith class or category, w; given by
Pz, {2z, 1 5 w,) =/ Plz_ _|{0}; w,)P({0}|{z, } ; w.) da{o}
_N+l b 25 9 . Y .
—%k°N 1 R{O)} N+1 i kN i (1.1)

thus introducing the requirement for an apriori probability density,
P({0}), as a measure of the uncertainty about the parameter; {0}, a
sequenc¢e of parameters associated with the observations (mean vectors,
covariance matrices, [pulse shapes, noise statistics]). The object is

to develop an optimum (minimum probability of misclassification)




decision equation (detector, classifier, etc.) structure for classifying

an observation EN+1 conditioned upon a past sequence of observations,

'{gk} = 7, with varying amounts of apriori information about the observa-
N =

tions. Abramson, Braverman® and Keehn® formulated (1.1) for the scalar
gaussian case with the mean unknown and for the vector gaussian case with
the mean vector and covariance matrix unknown respectively. In both cases
it was assumed that the apriori observations, Z, were classified yielding
an isolated ensemble for w, as
(1) ' i) (1)

z =12 ; P({e}|2; w) - P2 |{e} )p({e} ) (1.2)
In addition, both assumed apriori knowledge of P({@}(i)). Thus, a comple-
tion of the square in the exponents of the integral of (1.1) yields a
conditional mean and associated covariance for the estimates {é}‘in the
form of unweighted, linear combinations of the estimates of the mean, gi,
and covariance, 0, conditioned upon, and linearly averaged with, apriori
values reflected by P({O}(l)). This is referred to as the supervised,
classified or "with teacher" decision equation structure and is invariant
since iterations occur only in the elements of the structure. The form
of the structure is invariant, since Abramson, Braverman and Keehn assume
a8 gaussian and wishart form for the apriori Qensity of the unknown mean
and covariance respectively which corresponds to a natural conjugate
prior density for a guassian likelihood, P(EJ{O}(l)) (RaiffaB). Raiffa
has shown that when a natural conjugate prior density on {O}(l) exists,
the posterior density, P({O}(I)IEKI), wi), is of the same form (repro-
ducibility or invariant structure). Spra.gins)+ has shown that when the

observations are classified the prior natural conjugate exists for a

number of cases including gaussian. Clearly the learning with teacher



decision equation structure can be obtained by a linear substitution of
the conditional maximum likelihood estimates, {é}, from the classified
sequence (isolated ensemble for the ith class) into the Bayes matched
filter structure. In view of the classification, the estimator, {é},
of the elements for the structure is classically consistent and unbiased
and hence the structure is bounded and converges to the Bayes matched
filter. Jakowatzs, Shuey, and White consider:a sub-optimum cross-
correlation-detection-decision~directed approach for the case of one
fixed waveform repeating at random in additive noise (multi-dimensional
off-on case). Their approach is to take a given time slot, obtain a
correlation with successive observations until the cross-correlation
"detects'" the presence of the waveform, and up-date the estimate of the
waveform by a linear average of the active time slot with the previous

estimate. The cross-correlation detection concept is also treated in

6

Downing~ for the detection of differentially coherent phase reversal
keying where a previous symbol waveform is used as a reference against
which to correlate the time slot currently under observation. HinichY,
in performing a more formal analysis of the Jakowatz approach, showed
the existence of an asymptotically stable (but not necessarily unbiased)

estimator for the waveform and developed an expression for an asymptot-

ically efficient estimator for the discrete autocorrelation function of

the waveform in the Jakowatz model.
The first attempt to arrive at a minimum conditional risk formula-
tion for the decision equation structure in the unsupervised or unclass-

8

ified case was made by Daly”, who considered the off-on multidimensional

gaussian case and allowed the past sequence of observations, Z, to be




partitioned into all possible 2N patterns, yielding

N .
2 (r)
P(z]{e}) = [ p, P(z[{6} )5 2=Az ... 2z} (1.3)
r=1
A7)
where gr is the format of the rth partition, {0} is the sequence of

parameters associated with the partition, and Py is the probability of
the partition. The implications of (1.3) are that for N past observa-
tions, 2N possible signal pattern formats could have been present and
consequently it is necessary to have the equivalent of oN gecision
equation structures containing the estimates of the elements based upon
all possible 2N patterns; thus, giving rise to an unbounded structure.
Subsequently, Daly9, showed for the off-on case that the partitioning of
Z, yields a decision equation structure that, in view of the formulation,
is a minimum conditional risk structure at each stage, and by invoking
martingale theory, proved convergence of the structure to that which is
optimum for detecting known signals in known noise (Bayes matched filter).
Daly either did not choose to explore or was unaware of the fact that for
the binary gaussian case and independent observations, (1.3) could be
written in an equivalent two category mixture representation as
N

p(z]{e}) =}I—r1 [p;P(z,18;, ©) + pPlz |8, ©)] (1.4)
and Fralicklo, by incorporating (1.4) iteratively for the off-on gaussian
case in white noise, obtained a recursive form for P(8

8|

Fralickll also showed that the iterative conditional likelihood ratio

Z). In additionm,

structure is a bounded martingale, thus, proving bounded stable perform-

ance and an asymptotic limit for the off-on case when it is known that



one of the means is zero. Fralick did not make further use of mixture
concepts other than to utilize (1.4) and Hancock and Patrick > were the
first to incorporate mixture representations such as (1.4) in conditional
likelihood structures as given by (1.1) for the M-ary case; and showed
the equivalence of (1.3) and (1.4) in the structure. Also, Hancock and
Patrick13 applied histogram concepts to the unsupervised case and showed
that to estimate class conditional cumulative distribution functions
(c.d.f.'s) results in a mixture of multinomial distributions; and estab-
lished the conditions under which the parameters characterizing the multi-
nomial distributions could be uniquely learned in the binary case. In
the same work, they drew upon identifiability, a particular fundamental
concept of mixtures which is a definition of mixture resolvability, in
order to arrive at a means of determining the amount of apriori informa-
tion sufficient for a Bayes solution to exist. Teicher 14,15,16 defined
and established some very broad and formal conditions for the ident-
ifiability of mixtures although estimation of parameters in mixtures

was treated first by Pearson17 and subsequently by Raol8, Riderl9, and
Blischkego. Al] assumed independent observations and developed point
estimators by the method of moments for the one-dimensional case.
Pearson and Rao were concerned with the gaussian mixture, Rider treated
the exponential mixture and Blischke worked with a bi-nomial mixture.
Mix21 developed computer simulations of the detector structures for

the supervised, decision-directed, and unsupervised models and pro-

cessed one-dimensional binary gaussian mixtures with the means unknown

and noise variance known. The detector structures for the unsupervised




case included the partitioned (Daly) and the iterative (Fralick) forms.
Mix illustrated the contrasts in relative rates of convergence, and, in
terms of digital-computer implementation of the data-processing structures,
arrived at some measures of relative complexity in terms of memory and
processing time required. He illustrated the equivalence in complexity of
the partitioned and iterative forms.

The decision directed approach was treated by Scudder22 who suggest-
ed a linear substitution of the mean vector estimates obtained by a linear
unweighted averaging of the decision-directed time slot with the class to
which the observation was assigned, into the Bayes matched filter struc-
ture. Scudder assumed that the noise was white, that knowledge of this
fact was availasble, and treated the on-off gaussian case. He demonstrated
convergence2h for signal to noise ratios considerably greater than 0 db
and illustrated that asymptotic performance deviated from the performance
of the Bayes matched filter inversely with the signal to noise ratio.

Chang 23, in developing the form of the minimum conditional risk
detector structure for the unsupervised binary gaussian case with inter-
symbol interference between adjacent bands, invoked the mixture concept
and arrived at a four-category multi-dimensional gaussian mixture struc-
ture, with the constraint that a given waveform and its overlap have the
same sign. In addition, Chang , developed moment estimators for the
means (samples of pulse waveforms with intersymbol interference between
adjacent bauds), however, the estimators required apriori knowledge of
the noise statistics. He illustrated convergence of the detector struc-

tures and consistency of the estimators by digital computer simulation.



1-3. Motivation for Detector Structure Optimization Abcut Reduced
Complexity and Convergence Time

It is clear that in the areas of radar, sonar, seismolo>gy, communi-
cations, and bio-electrics, the signals available are never classified
into isolated ensembles and thus the with teacher model is not practical.
Second, the complexity, in terms of computer time and memory required
for instrumentation, of the parametric minimum conditional risk structure
for the unsupervised zase becomes prchibitive as it stands. In addition,
some apriori parametric measure of the uncertainty associated with the
unknown parameters, {0}, is required. Third, attempts to reduce the
structure complexity by a linear substitution of possible mixture resolv-
ing estimators for the elements into the Bayes matched filter structure;
have not been justiried as preserving optimality. In additicn, the
zorrelation-location, decision-directed structures simply pcssess poor
reliability and performance characteristics for negative db signal to
noise ratios. Finally, the moment mixture resolving elements perform
somevhat more reliably, however, more apriori information about the mix-
ture is required, and for the methods developed thus far23, knowledge of
the noise statistics is required.

In summary, it appears that the unsupervised structures possessing
reliable Bayes convergence rates are prohibitively compiex and that the
less complex structures, such as the conventional-decision-directed
system, possess poor reliability for the more practical signal to noise
ratio levels.

The effort in this thesis research strives for a reduction in the

complexity of an optimized adaptive or learning detector structure for




processing noisy binary signal pattern mixtures. In addition, emphasis
is placed upon maximizing convergence rates and arriving at relisble
performance for low signal to noise ratio levels (0 db and less). The
approach taken and the problem definitions in mathematical terms are

outlined in the next section.

1-4. Summary of the Approach and Contributions

In this work, the observation signal model consists of a discrete,
multi-dimensional, binary (two category) gaussian mixture. The vector
means (pulse samples) and noise covariance (noise statistics) are assumed
unknown. No apriori probability density on the parameters, {0}, is
assumed available, and in view of the non-bayesian formulation of the
problem, none is required. A complete formulation of this approach, to
include verification of the theory by digital computer simulation experi-

mentation, is carried out only for the bi-polar case, (6

__2=-0

_1), where

the probabilities of each class occurring are equal (pl = p2). An anal-
ysis for the general case is carried out and the difficulties encountered
in this approach, by the lack of specific apriori information are dis-
cussed in Section 4-5.

A portion of the contribution of this thesis appears in Chapter II
which contains a formal development of the average conditional probabil-
ity of misclassification under linear discrimination weighting of the
observation samples. The contribution lies in the fact that the error
probability is developed in terms of the expectation of the mixture
resolving estimators and the relationship of these expectations to the

classification operator corresponding to the minimum of the error
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probability. In particular, it is shown that the unique operator struc-
ture for classification or detection which minimizes the average condi-
tional error probability appears as a unique eigenvector of the maximized
eigenvalue in the error probability expression.

Further contributions appear in Chapter III, in which, through the
vehicle of variational calculus, is developed a mixture resolving cate-
gory, J, which minimizes the expected distance, ¢ ‘\é_- QJ{Q >, while
constraining the mean square estimation error,

118 - < 8 >]]% >

<
*
Further treatment shows that by varying the constraint, the convergence
rate given by, %ﬁ ; ||§.— 9}]2 >, can be maximized. The results of
Chapters II and III are applied in Chapter IV to the bi-polar case,
{91’ -6., 0}, and the more general case, {91, Ggi’
pointed out, results to include verification of the theory by digital

©}. As previously

computer simulation experimentation, are available only for the bi-polar
case with p; = p,. A general iterative expression for the recursion on
EQ(N) is obtained. It is verified experimentally that the convergence
rate can be controlled by an adjustment of the La-Grange multiplier
coefficient in the constraint.

Final contribution appears in Chapter V, which contains the develop-
nent of a moment method mixture resolving estimator for the multi-
dimensional case which does not require apriori knowledge of the noise
statistics. Chapter VI contains a discussion of the convergence rates
and performance characteristics. A computer simulation is developed and
discussed in Chapter VI for the two signal processing algorithms developed

in Chapters III, IV, and V, and for the conventional decision-directed

algorithm and the Bayes matched filter. A comparison is made of the
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relative rates of convergence and the dynamic and asymptotic performance
characteristics against the matched filter as a standard. Average per-
formance is obtained over an ensemble of noisy signal pattern observa-
tions with a given signal and noise pattern applied simultaneously to
all structures for an additional study of relative performance properties
on a member basis. The superior convergence rate characteristics of the
weighted-decision-directed ("rate maximized") structure are borne out

in the digital computer simulation experimentation. In addition, the
"rate-maximized" structure performs reliably and converges for negative
db signal to noise ratios where the conventional decision directed
method converges considerably slower and on a member run by member run,

is less reliable.

Finally a numerical technique is illustrated to bound the probabil-

ity of error.
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CHAPTER II

EIGENVECTOR OPERATOR FORMULATION

OF AN OPTIMAL SIGNAL MIXTURE PROCESSING STRUCTURE

2-1. Error Probability Under Linear Discrimination

Consider a discrete signal composed of two possible unknown pulses,

el(mTS), and ©_(mT_), of duration MpTy appearing independently every

2 S

MD'I‘S sec. in additive, zero mean, gaussian nocise with probabilities Py

and Py respectively. Examples of an arbitrary and a bi-polar base-band

observation appear in Fig. 2-1. The symbol T, represents the sampling

S

period and m ranges from one to MP where j is associated with the active

J
Mo M T m
S P, S M i
i P2 S

Fig. 2-1. Noisy Signal Pattern Mcdels




pulse. The time samples, thus constitute a sequence of independent,
multidimensional, gaussian observations, {Ek}N from classes wy and Wy

with unknown parameters (91’ 6), and (92, ®), occurring at random with

pfobepbilities p, and p, respectively. OSince there is a non-zero

"distance" between the population, 21 # 8,, the mixture can be resolved

1h-16 [identifiability]).

(Teicher
To arrive at some measure of distance between the classes of a mix-
ture, consider a set of hypothetical hypersurfaces which would separate
the populations with some associated set of proportionalities and risks.
In particular, for the two-class gaussian mixture above, a collection of

such surfaces consists of a sequence of hypothetical hyperplanes, {Bm(g)},

where a particular mth element is given by

nl2) =e z-2 5 m=0,1,2, ... (2.1)

where the parameters, {gm}, {Qm}, constitute sequences of associated

weighting coefficients and thresholds respectively. Clearly, the opt-

imal hyperplane, Bo(g), Bayes matched fiiter, is an element of the set

with parameters,

= . =1, ) _ -1
o, = 008,-8,1 5 & =5a, (8 +8,] +p,0;/pCy 5 0= (2.2)

where the C's are defined risks associated with mis-classification. By

associating hypotheses H; and H2 with the observation, Ek’ relative to

the boundary; (2.1) becomes a decision equation.

1
lm(gk) =,z 24 H =z euw
<L H2 =2y €, (2.3)

Regardless of the element, gm, chosen, a particular value of Qm’ L,
m



1h

can always be found which corresponds to that region of classification
or separation for that category m (that particular hypothetical set of
parameters for the populatibn,v(O)m, out of the sequence {(G)m}) such
that the probabilities of misclassification are equal. Consequently,

the two associated error probabilities are

P{H_|w } = - Plzlw,)de (z) = [ P(zlw,)as (z) = PH, |w,}
2|wl 2(_2_)'1’2_1" " 2a(2) < 2y e’ m 12
T %y m (2.4)

Taking
E{lm(_z_)lwmgl = gmgmz s 2=1,2 ;3 m=1,2, ... (2.5)

and
2 =1

El(z (2) - E[lm(g)|wm2]) Iwmg] =a 0 o (2.6)

the identification, detection, or classification error probabilities

become
P{H_|w } = (21q )2 exp [-% (% (z) - o 8 )2/q las (z)
m (2.7)
= (onq )¢ [ exp [ (1 (z) - o 6 )2/q a8 (z)

Qm ,Q,m(g) < Q,O m —m-—m2 QTH m
m

where

Q = o 0 "1g (2.8)

m -m m -m

Since the gaussian family is symmetric and since O, is the same for

both populations,

m 1
The densities of the test statistics associated with the mth boundary,

8o = (Ble(z)fw 1+ E[zm@lwmg])/z (2.9)

under the two hypotheses, are illustrated in Fig. 2-2 along with a
hypothetical contrast to the densities of the Bayes matched-filter-
weighted test statistics. The thresholds given by (2.9) are also

illustrated for the mth group of elements by 20 » and for the Bayes
m
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matched filter by lo . Since the terms in (2.7) are equal, equivalent
o

results can be obtained for either, and the approach is simplified by

considering one term.

Thus set ‘
Pe(m) = P{H£|wmk} k8 =1,2 ;3 k#2 (2.10)
and with the change of variables,
1
Yy = (2 (2) - gmgm2)/Qm (2.11)
using (2.9), (2.7) becomes
i
_372 '()\(m))z >
Pe(m) = (en)™2 | wexp [-% ym]dym (2.12)
From (2.12) it is seen that
Min Pe(m) = Max A(m) (2.13)
gms En gm € En
A
En = [finite n dimensional space]
' 2 '
a ¢ o A «
)\(m) = -m "in “m M m
2
2Qm h%n
|
I | |
| | |
' ’—’- “*:\ I _-r-s\
7’ ~ rd
| ," | \\\ // r N
| . ! NV N
/* | // S~ ' ~

Fig. 2-2. Hypothetical Contrast in Test Statistic PDF's
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where
1
A,=8_ 8 ; 8 (6 -8 ) (2.14)
-m -—m - -ml —m2

and that the probability of error for the mth element, Pe(m) is a mono-

>

tonically decreasing function of the positive definite form, A(m); since

Am and Om are both symmetric.

2-2, Structural Form of the mth Optimal Linear Detector

In view of (2.13), it is concluded that the minimal of error prob-
ability with respect to the mth element category corresponds to linear
weighting of the signal samples by the elements of a vector operator

which effects the maximum of A(m). Taking

Alm) . (2.15)
90 -
m

yields a homogeneous, eigenvalue equation

(6 & - A(m)T) a, =0 (2.16)
and Max A(m) corresponds to the largest eigenvalue of Om Am .
However,with R denoting rank,

R(0, & ) iMén [r(e ), R(Am)] (2.17)

and in view of (2.14), since 0, is non-singular and R(Am) is one, then

the rank of the product is one. Consequently since,

Hess

xj = Trace (M) (2.18)

3=1

where the Xj are the eigenvalues of M and since R(@m Am) is one, there
is only one eigenvalue. This eigenvalue is the maximum, for the mth
group elements, and is given by

] 1]
xo(m) = Tr(@m Am) = Tr(Om s gm)= gm em gm (2.19)




The desired observation-signal-sample weighting vector operator corre-
sponds to the eigenvector corresponding to Ao(m)- The substitution of
(2.19) into (2.16) yields

0, S, 8, 8, = 8,6 8 o (2.20)

and from (2.19), the desired vector operator is

=0 § (2.21)

which is the eigenvector corresponding to the eigenvalue

Sup { Max A(m)} = Sup Ao(m) = (m ) =.§' 08 (2.23)
m o € E m
T n

where ©, and § are true population parameters. This would have the
effect of giving

Inf { Min P (m)} = P_(m,) (2.2k)
m a € K
-—m n

the error probability of the matched filter.

Thus the vector operator structure which operates upon a vector
observation to yield M&; Pe(m), relative to the mth category elements in
the sequence {(O)m}, is given by (2.21). The argument of the optimal
operator structure relative to an element cateogry m out of a sequence,
{(@)m}, is presented in order to introduce the concept of optimizing a
structure within or about a category of elements, J, in particular an

estimating category; which is carried out in the next section. The actual

introduction of the elements from the mixture is treated in Chapter IIT.
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2-3. Estimating Category Conditioned Error Probability

Consider a general vector, h € E,, with all continuous possible
values for the elements in (2.3) {(in essence call the sequence of
elements, {gm}, the general variable h which can take on any continuom
of values in the sequence). Consider the raw samples, {Ek}N'

mixture resolving estimators, {é({gk}N, N, J)}, for the parameters, {0},

If any

from some estimating cateogry J, can be developed such that

Lin P{[{8({z, }y» N, 3)} = {C}] > e} =0 (2.25)

N>
or some other measure of consistency, exists, where {C} is some sequence
of constants, then one can take across an ensemble of error patterns
E[Pe(N, J)] (2.26)

That is, if some separation of an observation Zyos from the mixture {Ek}N’

* *
can be achieved into spaces wys Wy by an operator with coefficients

from some category, Je{Jr}R, where mi’ m; need not initially coincide
with ml and m2, and J is not yet specified, then over a separation

ensemble cne can take the expectation, < >

1

~ *
< 2z s N, Dlw,*>=1h" <6 ({z} 3N Nw, >3 24=1,2
2 il o~ b 9 2 1]
“N+1 2 %N (2.27)

and

*

¥.32
<(olzy, 3 M, 3) = <z 5 Ny Doy )%,

1
=n' <07l({z }y ; N, I)> b (2.28)

As a result, at any stage of observation and classification, N, for a
particular estimating category, Je{Jr}R, the measure of distance or
error probability would be given by

(&' ®BLS (v, )1/2 (v, 3)7

f exp [-% y?]dyJ (2.29)

-— OO

al
-

P AN, J} = (2nQ(N, J))
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where
(N, J) =n' Ho l(w, J)lhn (2.30)
and the change of variable
~ 1 ; , .
vy = (Wlzg, 3 N J) - n' g, (N, J))/Q2 (N, Jit_' , (2.31)

has been introduced as in (2.11).

Thus from (2.29), it is seen that the error probability at the Nth
stage is a monotonically decreasing function of the positive definite
form

AN, J) = h'a(N, J)h (2.32)

where Q(N, J) is given in (2.30) and
. - /
AN, J) = < 8({z, } 3 N, J) > < g({gk}N.; N, J) > (2.33)

2-4, Structural Form of the Estimating Category, Je{J}q, Conditional
Optimal Linear Detector i

The results of the previous section indicate that at the Nth stage
within the estimating category, J, the minimum error probability arises
when discrimination is carried out by a vector operator, Eo’ which is

the vector operator maximizing the form A(N, J). Thus

Min P_{N, J} =Max (N, J) = Max h'a(N, J)h (2.34)
h e En he En he En N, J)
Taking, again
(N, J) _
=8 (2.35)

yields the corresponding, estimating category conditioned eigenvalue

equation

(<6({zy }y 5 N, J)> AN, J) - A(N, J)I)h = O (2.36)
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Assuming that a mixture resolving category, J, exists such that é({gk}N,BLJ)

is non-singular (this is shown later), and in view of (2.33), the rank of
<é({§k}N,N,J)> A(N, J) is one, hence there is one and only one eigenvalue

of (2.36), which is given by

hM:xE AN, ) = A (N, J) = Tr < é({gk}N; N, J) > A(N, J)
- n = < §ﬂN, J) - é(N, J) > < §KN, J) >
(2.37)
Now from (2.36) and (2.37) one obtains
<o, ) > a(N, Jn =2 (N, )b (2.38)
and by inspection
h_=h(N, J) = < (N, J) > < §(N, J) > (2.39)

Thus, (2.39) gives the structural form of the unique vector operator
which minimizes the error probability at the Nth stage relative to or
conditioned upon the estimating category, J, as the eigenvector of a rank
one eigenvalue equation. By invoking properties of ergodicity, and
martingale boundedness, it can be shown that for a given signal pattern,
the range of the random variable error probability, Pe(N, J), at the Nth
stage, relative to the estimating category, J, is minimal when the opera-
tor structure is given by

bW, ) = 6({z,} . ¥, 3) 8({z Y, N, J) (2.40)
Thus, the form of the vector operator is fixed whereas the elements,
{é({gk}N, N, J)}, are functions of the past observations, {Ek}N’ the
nlmber of observations, N, and the estimating category, Js{Jr}R.
Clearly, for an estimating category, Je{Jr}R, possessing consistency,

one has

Lim P_(N, J) > P_(J) (2.41)

N
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the asymptotic performance characteristic for the Jth category and

< io'e(N, J) > = P (N, J) (2.42)
m

the true dynamic performance characteristic at the Nth stage. It remains
to develop, the mixture resolving categories, J e{Jr}R, which either

allow or approach

Inf  {{Min  P_(N, J)}} = Inf P, (N, J) (2.43)
Jellpln hek Jelady  ©
due to
h' A(N, J)n )
Sup Max ——— | = Swp Ao(N, J) (2.4k)
J eld }g b e By Q(N,dJ) J eld lg

Conditions (2.43) and (2.L44) can be attained at each stage by the formal
mixture approach, (Bayes partitioned or iterative formulation of the
estimating category, Jg, for the elements of the structure), but will
not be pursued due to the complexity required, as mentioned previously.
The actual value of P _(J) (biasedness, if any, of asymptotic performance)
P (N,J)
as well as —————— (performance convergence rate) depends upon the
specific mixtuerresolving characteristics of the element, parameter,
signature, or feature, estimators; and would be expected to vary from
category Ji to Jj' Consequently one is interested in that estimating
category, JO, which possesses some rapid convergence characteristic
toward the asymptotic performance, Pe(JO), for that category while
maintaining some minimal dispersion of performance about the optimal
performance at that stage. The development of one estimating category,

Jos with the foregoing optimality criteria imposed, is carried out in

the next chapter.
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2-5. Optimality Preserved Under Linear Substitution of Mixture
Resolving Estimators

Recalling (2.29) and (2.3k4)

Min  P_(N, J) = Max  A(N, J) = A (N, J) (2.45)
hek, h e Eqy

It was seen that the average error probability at the Nth stage relative
to the estimating category, J E{Jr}R, is minimal when the vector operator
applied to the observations consists of the unique eigenvector corre-
sponding to A (N, J). Further it is seen from (2.140), that the elements
of this operator are linear substitutions of the mixture resolving
estimators, {O(N, J)}, for the estimating category J. In addition, if

an estimating category, J,, exists which is statistically consistent for
the mixture parameters, then

Lin P{|{8(N, J)} - {C}| > e} =0 (2.46)

N
and thus,

Lim Pe(N, Jy) ~ P (J

2 (2.47)
N>
If the category contains no bias, then
P (J,) = P.(JB) (2.48)
and the structure converges to the matched filter.

Thus, this research contribution includes a formal development of

the vector operator structure which minimizes the estimating category

conditioned error probability and justifies, in the development context,
the linear substitution of the Jth category, mixture resolving estimates
into the structure. For the gaussian case, the structure has the same

form as the Bayes matched filter structure, however, the elements differ
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in that they possess the mixture resolving properties (convergence rate,

consistency) ©f the particular Jth category contained therein.



CHAPTER III

VARIATIONAL DEVELOPMENT OF THE PARAMETER

ELEMENT ESTIMATING OPERATOR

3-1. Initial Separation of an Observation from a Mixture

The work in this chapter is concerned with the development of an
estimating category, J e€{J,},which is to resolve a mixture with a
specific criteria of resolution imposed, in order to provide elements
for the detector structure developed in the previous section. In

particular, the criteria that is desired is some sort of bounded, time

minimized consistency. The interpretation of boundedness is to be taken

in the sense that one wishes to minimize the dispersion of the values
of the parameters being extracted and thus minimize the dispersion of
dynamic performance from the classically optimum. In addition, it is
desired to achieve time minimized consistency in some sense in order
to achieve asymptotic performance in minimum time, granting that the
first criteria will insure learning or adaptation such that the finite
time asymptotic performance reasonably approaches the classically
optimum.

Consider the mixture of observations, {Ek}N’ where each observa-
tion lies in the space given by

Q=w, Uw (3.1)
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as illustrated in Fig. 3-1.

Fig. 3-1. Mixture Observation Space
In order to initiate a resolution of the mixture, {Ek}N’ consider
an initial separation of the jth observation, z,, from the mixture, by
some process, into the space w:, i =1, 2, where the subscript refers
to the space of the reference for separation and the space is starred
since it does not coincide with w; as a result of the true reference

being unknown. Clearly, if the means, 8

8> EQ’ (samples of pulse wave-

forms), were known, they would serve as the reference (as elements in
the detector structure), and the separation (classification, detection,
and recognition in this case) would be achieved under the following

total probability scheme.

P P
IHllgj € wl} 10 {Hg|_§_j € wl} Py

P{Hglgﬂ e wy} = p,,

(3.2)

1]

P;{Hl|z._j e wy} = pyy

In the unsupervised case, the reference must be extracted from the

mixture. Consider then a separation of the (j+l)th observation, z, _,

J+l

from the mixture, {Ek}N’ by some process based upon the likeness or

similarity of z

S+1 with any other observation, Ek’ in particular with

the immediately preceeding observation, Ej’ Consider the hypothetical

decision rule,




1t

H
S (3.3)

< 'Q'j Hp
Clearly, in order to preserve homogeneity of the system, the structure
of (3.3) must be compatible with (2.3), in the sense that as the param-
eters are learned, no change in structure should be necessary with
changes occurring only in the elements. This is seen to be so in
Chapter IV where specific cases are studied. The significance of the
subscripts, S and D, is that the hypotheses imply similarity and dis-
similarity respectively, yielding the total starred probability scheme
corresponding to the probabilities of the error of the first and second

kind and the complementary probabilities of correct assignment for the

similarity hypotheses.

™

P{HSIEJ € WINZiyq

3 WIUZ) € W2 N Zy41 € wo} = pll(j)

™

Pliglzy e wjnzyyy € w02y € 0 A Zgay w%} = p,,(4) .

01Uz B B NE L €Ul = e ()

™

P{HDlEj € W NZi4

P{HDng € WNZ,) & WUZ) € By N2y © wl} = pgg(j)
That is, the observation,gﬂ+l, and the reference,gﬂ, are either both
from w; or both from Wy, Or one from each in two possible ways. The
starred space notation is used because the separation of an observation,
Eﬂ+l’ from the mixture, {Ek}N’ by referencing with the observation, Z35»
separates the two into spaces such that if some combination of the
separated observation were to be carried out to achieve an estimate,
{é}f the elements or moments achieved would not coincide with the
elements of the true spaces, {0}, except possibly asymptotically.

It is appropriate to point out that the concept of one-shot separa-

tion on the basis of adjacent similarity is employed in the differentially
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coherent phase-shift-keyed system, however, no effort is made to achieve
any improvement in separation or referencing, by any combination of the
results of the referencing in order to effect an adaptation to or a
learning of the true reference. Clearly a sequence of one-shot compar-
isons could be made, however an error followed by a sequence of correct
comparisons of similarity would result in a severe error propagation
format, which for low signal to noise ratios, is the most serious draw
back of the DC-PSK system concept.

Thus the philosophy is to reinforce the structure, h, given by
(2.40), by combining the separated observations in a manner which imposes
the desired criteria previously mentioned. The mathematical functionals
imposing the desired criteria and the manner in which the observations

are to be combined, are discussed in the sections which follow.

3-2. Time Dependent, Weighted Combination of the Separated Observations

Consider now, two or more observations, Eﬂ’ 23410 separated from

. *
{z }y into w,,

2 L.
-
!
(w;) :
{zgs 239t =2 = 3 zy = ?ij L=1,2 (3.5)
Zn
|

Consider a time (observation) dependent, weighted combination of jhe

. (w,)
two or more separated observations to form an estimate, QKNQ,.E .

), of
the mean associated with the space of that particular separation. The

welghting process will always initiate with a combination of only one

(the (j+1)th) observation with the similarity referenced observation



(the jth as ean example) and a discussion on the initial separation
appears when specific cases are considered. The subscript & is
*

identified with the first similarity decision (say ml) and the next

. - . . . *
dis-similarly constitutes an observation separated into Ws3 Or the
reverse, since the order in which the space is assigned is of no con-
sequence in the binary case.

Consider then, the time dependent, weighged average, given by

. (wg) (wg)  (w,)
o(m,, 2 Y - N;l H(N,, 2 gﬁ) Z g (3.6)
where
. (M) Hy (M)
(wg) . .
H(N, 2 =)= s B (W) = ' (3.7)
() HiNQ(Nﬁ)
and
i
'(wZ) s
Z =(zy5e0e0z) 5 2, = |- (3.8)
ZiN

For simplicity, since only one group of separations will be considered
% A

at a time, the subscripts &, wy can be dropped, and Ny can be taken as

Nl’ the number of similar observations separated into one group prior

to a dis-similar observation, under the condition that Nl > 2. Thus

(3.6) can be written for easier interpretation as

8Ny, z) = vt E(N,, 2) 2 (3.9)

and the estimate of the ith sample associated with the discrete unknown

waveform of dimensionality n is given by

A -1
0; = N] ;{:i(Nl) z; (3.10)

where H;(N;) is the ith vector operator element of (3.7) and z; is the
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vector of the ith samples in the separation sub-mixture, as

- — — —
Zq “ee Zi, - 2 Z2;
« J J J : J
z=1{z,,2.,°}= |z . Z. eee T sz =1z,
J’ =Xk lk lk nk = iy
le .o ziN v T, ziN
1 1 1 1
i _ L]
(3.11)

The specific properties of the observation-time dependent, weighting,
operator in (3.9) must take into account the criteria discussed in 3-1
and functionals for these criteria are developed in the next section.

3-3. Development of a Constrained Functional for Maximizing Convergence
Rate and Minimizing Dispersion

Consider the following functionals for an estimating category J,
)

= .12
R D (3.12)
a 2
WD = ; Hg.(Nl: _Z_) - QH > (3.13)
- . 2
WE =< ll_ﬂNl, Z) - g QﬂNl, Z) >|| > (3.14)
Lim P{Iﬁ(N:L, Z) - Ql >e} >0 (3.15)
Nl,N»w

where WD represents the normed measure of distance in n space, at state
Nl’ WR represents the rate of change of distance, WE is the mean-square
combination error, and if C coinsides with the true pulse waveform
samples, the estimating category is unbiased with probability one. For
the ith element of the estimate associated with the ith element of the

multi-dimensional observation,

~ _ -1 [}

consider the ith component in the functionals (3.12) through (3.1L4),



s
bp= 5 (FH(Ny, 2) oz - 0;)% > (3.18)
1
= < (2 g - <1 g 2
e i G i, 202 - Sy B (N> 2) 2y )% > (3.29)

One then wishes a general functional, y, composed of constrained combina-
tions of the functionals (3.17) through (3.18) in such a manner to effect
an operator, H(N;, Z), (henceforth referring to the ith element), corre-
sponding to the estimating category J with the desired properties of
maximizing the convergence rate and minimizing the dispersion of dynamic
performance. The initial approach was to consider,

Vo=t Y g (3.20)
where y is the so-called La-Grangian multiplier coefficient associated

with the constraint, and to impose upon the variation the conditions

Max g 3 Vg <O (3.21)
HekE
and
Min  yp (3.22)
He ENl

In this manner it was hoped to directly maximize the negative rate
of change of distance (convergence) and minimize the dispersion of the
dynamic performance by constraining the mean square error of the Jth

category. However from (3.16), it is seen that

3

1
=avr s G E (N, 2) zg - 0% > (3.23)

U)R Nl -1

and with a variation still to be taken on H, the expression for wR ig

both explicit and implicit in N,, and thus a derivative cannot be taken
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directly. However this problem can be circumvented to some extent by
considering

¥ =9yt Y Ug (3.24)
as the functional upon which a variation on H is to be taken to minimize
the normed measure of distance subject to a constraint on the mean square

error. Then upon solution for H, taking
)

. . a .
o VR, (M.v)) = 37 7y vp(E (s v)) (3.25)

and adjusting the normed rate of change of distance with the La-Grangian

multiplier while maintaining some control over the mean-square error, it

is hoped to effect

Max  {=2— Min oy, }= Max {=— yp(H,(Ny, v))}
y elyly Ny He ENl D y e{y} Ny =

= Max wR(EO’ Y) = wR(EO’ YO) (3-26)
v elyly
The validity of this approach is borne out in experimental studies of the
control effected upon convergence rate and dispersion by the adjustment
of the La-Grangian multiplier in Eo(Nl, v). Thus the operator, Eo(Nl, Y)
which satisfies the minimization of the functional, ¢(E)a as
VN1, 2)) = wp(H (Nq, v, 2)) + v vg(E, (T, v, 2)) (3.27)

followed by an adjustment of y obtained by

3 3
3y oN ¥y

(Ny, v» 2)) = 0 (3.28)
1

298

to yield some EO(Nl, Yoo g), is the operator desired to weight the com=-
bination of the separated observations, in effect yielding the optimum

estimating category, Jo, desired. The extraction of the parameters, {0},

in this manner is thus to reinforce the structure given by (2.40) in such




a manner as to minimize convergence time and dispersion of dynamic per-
formance. The mechanics associated with the minimization of Y, and the

solution for H are carried out in the following section.

3-4. Minimization of ¢ and solution for H.

Recalling the functional to be minimized,

W(H) = yp(H) + v yp(H) (3.29)
by a variation on H; it is seen that minimization can be achieved by
partial differentiation as a result of the discrete, finite dimension-
ality of (3.29). Thus, specifically, recalling that (3.29) is associated
with the ith element

(B =5 (N E] 2 - 025 (3.30)

which upon expansion becomes

(B) =< 0° -0 2. 0. + =82 2' H > (3.31)
Vo) T % o BE 2B A y
1
,and by a distribution of the expectation, yields
-2 _2 ) IS ! :
opll) = 0y - §mHi 52 0>+ K <5z > B (3.32)
1 Ny
A 2
The validity of (3.32) can be checked by expanding (%7-§; z, - 0;)" and

writing the result as a series followed by the starred expectation on

the finite series. Also

- < (g g 2
veH) = g (Nlﬂi Zi - §w Bz ) (3.33)
which upon expansion becomes
1 t ' o 1 ' 1 ' )
H) = ¢ = s Z. 2. H. - ; .z, + ;
bg(H) *Nzﬂzlzlﬁl MR N2-)<t-§‘l£1>>
1 1 1
(3.34)

and by a distribution of the expectation, yields




¢E(E=N2—1 $2 2 >H -Ch gz, >3z, > H o+ H o<
1 '
$z. > H) (3.35)
z
Finally, by collecting terms
( - 1 1 ' ' 6
Yp(H) = = {H, (<2, 2 >-<gz >z >]H!} (3.36)
) N 2 =i "% — = * —1 % —i 23
1
Now, combining (3.32) and (3.36)
20;
- 2__,]__.1 _.1_'..' 1
v(B) = {e; ngié-z-'i>+N25-i;Ei-z-1>§'i}
1
+YN2{E_'L[')<"£.L£i>—;£i><Zl>]H1}
1
(3.37)
and taking
§-w<E) =0 (3.38)
yields
2 2 4 2 [ _
-N;@i;%>+N—z;zi.z.i>Ei+Yng[;£1£i> MRS
1
1)
$2,>1 B =0 (3.39)

as the minimized system of equations. Clearing (3.39) of N, and rewriting

into the standard form, the system is

[z, 25 >+ v (

> - z., > > )] H,

< < Z.
2 ¥ —1 * —/ i

1
< Z.
¥ = =

=N 0; 5z, > (3.40)

By the nature of matrices composed of first and second moment expecta-

tions,

RULE 23 Ei >+ y (g2, 2 > =523 > 523 >)1}= N (3.41)

and thus (3.40) is a full rank system of equations and consequently a

unique solution, Eo’ for H exists, given by

' 1 1, =1
EO(N]_’ -y) = [; _g,_l —Z'.L > + vy ( 7z, > )] Nlei -)<e£i>:

(3.42)
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Thus the weighting operator, Eo’ which satisfies the conditions
imposed by (3.27) is given in (3.42). In order to consider further, the
application of (3.L42) to specific cases, it is essential to examine the
elements in the system matrix. This is carried out in the following

section.

3-5. Elements of the Weighting Operator,,go

Recalling (3.42), the matrix of the system of equations is given by
! '

C(Ny, ¥) = [g2, 2, >+ ¥ (< 2z, 7, > =

. <z, >
¥ —1 —1 ¥ —1 —1 %

z, > )]1(3.43)

<
% —i
with the expectation taken with respect to the starred space defined by

separation up to stage N,. Also, recalling (3.4), it is seen that the
1

* %
w w
( l), Z( l>, with pro-

separation initially produces two submixtures, Z
portionality parameters given by (3.44) below. This idea is common to
the case of detection with known parameters, where classification is not
without error, and the classified observations constitute two mixtures

of "zeros in ones" and "ones in zeros" with fixed parameters of mixture
proportionality. In the adaptive and learning structures, the parameters
of proportionality are observation dependent, reflecting the convergence
properties, and constitute a Markov process with random transition prob-

gbilities. Consider an initial test of 2

Zy+1 against Ej as a reference,

and the hypotheses given by (3.4). The following submixture generating

scheme is observed, with mixing parameters,

2 . %,
PUHgO) A U Hy O Ay = p), (3) 27 + 2 (0) pyp, = Py, (J)

2

s ] * 2
PUH, () A, U Hy () Ayt = p1,(3) By, + Py (3) P2 = ppo(d)

(3.L4)
- . 3 5.2 = o ¥
P{H OV Ay O Hy O A3} = p,(3) ooy + Ppy (3) P17 = pyy (4)

; o . 2 . _ *, .
P{HG () AU By O Aot = 2y, (3) 27 + 2, (3) pip, = pyp(d)

Zyyy S0l k2=1,2

1
Ay, = {gﬂ € Wy
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In words, (3.LL) means that referencing Ej+l against Ej results in a
separation such that the observations are both similar and are separated
as similar or dissimilar, or are dissimilar and are separated as similar
or dissimilar respectively. The terms, pll(j) and ng(j) are the prob-
abilities that the observations are statistically similar or dissimilar
and are separated as such. Thus the values of the probabilities are
constantly changing as the structure is re-inforced, characteristic of
the learning or adaptation that is taking place, and this is represented
by the subscript j. As such, the probabilities are random variables, in

particular teranomial random variables (multi-nomial with four variables).

At any stage, j, consider the (k, £ )th element of

| .
$252 = [r - (k, 2)] i=1,2, ..., n (3.45)
-1 71
k,0 =1, 2, ..., Ny
given by
r =c<z, 2z, >=<(0; + N, ) (6, +XN,)> (3.46)
kg * 1k 1£ * k 1k 12 12

r =< (0; 06, + 0N, N, ) > (3.47)
Taking the expectation over the starred space, with reference to (3.Lk),

for the binary case, (3.47) yields

_ * ¥ 2 * *,2 )
T = (P1g 1, * P12 eei) ey + Pt < Wy Ny >k # L
(3.48)
For k = ¢, (3.46) is
= = 2 = . 2
ke T Tk T P 7T R (05, +1M; ) > (3.19)

which upon expansion, for the zero-mean noise case, and expectation

£ > yields

= * 2 * o) * % o2 _
e T P11 01 * P12 O * (g * pyp) ©Ne k= (3.50)




Since the expectation has been taken at the jth stage, the expectation
of the random variable, p*(j), is replaced by the expected value "+
p*; at that stage and consequently no subscripts, j, appear in (3.48)
and (3.50).

The remaining matrix in (3.43) is

$2;> §£24° (3.51)

o
A

where the (k, %2)th element is given by

m_ .= Z. >

kg~ % i % %1, > = 3

(@iz + Niﬁ) >(3.52)

*®
—~
[y
b
[
L
®A

which for zero-mean noise becomes

'Y}

For the case, k

_ * * 2

$0 5% > (P 0, +p50,)° k#e (3.53)
k L 1

£, in view of the zero mean noise,

m, =m, =<0, > = (p 30 + D, 0
ke - Tkk T % Vi P11 ®15 7 P12 2y

The substitution of (3.48), (3.50), (3.53) and (3.54) into (3.43),

)2 k= g (3.5h)

yields the general expression of the matrix to be inverted, at the jth
stage, in order to provide weighting coefficients for combining the
separated observations in a manner such as to maximize convergence rate

and minimize dispersion. With the results developed thus far, it is

now possible to consider specific cases such as, {91 = -QQ}, {91’ 95},

etc.; and specific forms of EO(N Z, Y), given by (3.42) are developed

1’ =

in the next chapter. In particular, an iterative format of the

recursion for go(Nl, Z, v) is developed.
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CHAPTER IV

THE PARAMETER ELEMENT ESTIMATING OPERATOR FOR THE

BI-POLAR AND GENERAL TWO-CATEGORY SIGNAL PATTERN MODEL

L-1. The Integrated Signal Processing Structure

The work’ in the previous chapter resulted in the development of an
opersdtor,
X

Nl,”y) 9;.5 z; > (4.1)

Eoi(Nla Yo _Z__) = Nl C Z;

as the weighting operator of the ith samples in a time slot of dimension-

ality n, where

CNy, v) = [R+ v (R -M)] (h.2)
and
5 Ei.> = (plz Qli + pl; Ozi) 1 (L.3)

The vector operator was found to be the unique solution of a full rank

system of equations obtained by extremizing a constrained functional y.

The functional ¢ was a combination of functionals arranged im a manner
such as to allow the maximizetion of the convergence rate and minimiza-
tion of the dispersion ef dynamic performance, the contention being that
maximization of the consistency of the time dependent, weighted estimates
of the samples of the discrete unknowm pulses with a congtraineaumean-
square estimation error carries these properties over into theigetectiana
recognition, and classififcation properties of the structure. These

hypotheses are proven correct by a digital computer simulation of the




38

signal processing structure, signal patterns in noise, and the actual
processing of the observation signal by the structure. The results of
the computer simulation experiments and a discussion of related per-
formance appears in Chapter VI.

At this point it is appropriate to introduce a basic diagram of the

data processing structure, Fig. 4-1, which can be interpreted as follows.

1

*
(wy) :
{0} 1 N .y, 2)
{z, } N+l

N+1 +
W S )
) + N+1

Fig. L-1. Optimized Feedback-Mixture-Resolving Detector Structure

The input, {Zk}N+l’ is an unclassified vector sequence of noisy discrete

binary pulses (mixture) as described in the introduction, and neither

the pulse waveforms nor the noise statistics are known. The structure

h, as given by (2.L0), is the eigenvector operator detector structural
form which minimizes the conditional average error probability as it
initially isolates observations and, with the first re-inforcement of
its elements in the structure, generates a sequence of binary decisions,
{Ek}N+1' The structure h, in its initial separation and subsequent

(w

)
decision, gates the time slots through to the operators Hl(Nl, Ys Z 1 )
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(wh)
2 . .
and H2(N2, Y, 2 ), which combine, in a time-varying, weighted manner,

the gated observations, to generate up-dated values of the elements

(parameters) %n the structure h. The time varying operators,
H,(N,, vs Z ) and H_(N,, v, Z ) are not both active simultaneously,
2 =)

1 L - 2

however the sum of the outputs generates a continucus sequence, {yk}N+l’

which is the extracted signal pattern as 'recovered" from the observation

mixture by the operators Hl and H2. As the elements converge, eg., as
(%)

the outputs, {0}, 41> reinforce h toward more correct decisions, the
2

estimates {extractions) of the discrete pulse waveforms improve and the
sequence {yk}N+l resembles more closely the true signal pattern. The
sequence {Ek}N+1 is the decision sequence and agrees in format with
RASEE

Thus it can be concluded that the above structure is a time-varying,
weighted, decision-directed structure, which extracts the initial ref-
erence from the observations. The formulation and structure differs from
the conventional decision-directed system in two fundamental ways. First,
the conventional decision-directed system does not extract the initial
reference from the observations, and second, unweighted linear averages
are taken to provide reinforcement of the detector structure. As a
result, the conventional decision~directed system is seen to be unreli-
able at signal-to-noise ratios from just above O db. down.

It can be seen that this is inherently a feedback structural re-
inforcement system and will be contrasted in Chapter V with a feed-
forward mixture resolving structure. However, it will be seen that the
feed-forward system requires more apriori information, in certain terms,

regarding the observation mixture.
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L-2., The Optimized Weighting Operator for the Bi-Polar Signal Pattern
Model

For the mixture observation, {z,} _, as described, the most
=k N+l
general relationship between the two unknown discrete pulses is given by

(L.14)
where the elements differ by a matrix operator transformation G. For

the case

G=kI (4.5)

the signal pattern model is said to qonsist of two signal categories

differing only by a location parameter, and for the specific case;

k = -1, the signal pattern is bi-polar with unknown pulse waveforms.
Consider the bi-polar case then and refer to the upper branch

in Fig. 4-1 as w;. The weighting operator for the ith element of the

discrete pulse 21’ upon the ith elements of the sequence of n dimensional

*

(w
time slots, {gﬂ‘l)}m , where Nl > 2, depending upon the number of like-
1

ness decisions gated to w: or w; prior to at least two observations

gated to the "other" bragch, is given by
(w7)
1

_ -1 .
Ho (M, vs 2 7 ) =Ny OOy, v) 0, 52y > (4.6)
Now since 8, = -85, (4.3) becomes
* *
s>y mppp) 6 L (4.7)
Also from (3.43) and (L.2),
C(Ny, v) = [R + vy (R - M)] (4.8)
where R and M are Nl dimensional matrices given by
1
R=lr (5, O] =gz 2 > (4.9)
=i =i
and
1]
M= [mzd Ei(k, )] = N z, > 1z (4.10)
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For the bi-polar case, the (k, 2)th elements of R, from (3.48) and

(3.50) become

r ., = (pi 7
ke~ ‘P11
and
r. = (p, ¥
kg - P11
Where 0,2
i

*
- p12)2

*
+ Dy5)

is the variance of

each time slot. From (3.53)

m, = (p. ¥
ke - ‘P13

= P1o

Consider for the time being,

< N. N. >

* 1p iy
and

p 2 _ G2

Thus from (L4.14), (L.15) and

of R and M beconme

=0

i =

2

>3k # 2 (L.11)

2 * *.2
O, * (pap *p1p)” < My Ny

0 2 4 (

X * *V 6.2 k=21 (4.12)
i

P11 T P1o) 9

the zero-mean noise in the ith sample of
and (3.54), the (k, %£)th elements of M are
91? K2 =1, 2, .auy ) (4.13)
stationary, white noise, such that

(L.14)

1,2, ..., n (4.15)

representing (pli - pl;) by Ap, the elements

2
Ty = Ap° 01 k # % (4.16)
and
* *
= ) 2 -
g (pll + pl2) [eli + 0°] k=2 (L.17)
Also
m , = Ap2 0,° kK, =1, 2 N. (4.18)
k2 P li s > > e O] .
R-M-= [rkz - ka] (4.19)
where

[, - m ] =

*
(pyq
=0

+p13) 015 + 021 - ap? 0,2 k= ¢  (h.20)

k # 2

Thus from (4.16) through (4.20), (4.8) becomes



Q
—~
=

-
<
|

%
1 [R + Y{(pll +p

B *
+
(py + 25000

12

1

*)io

14
$1[0.2 + 02] AP 0.2 i,

b2

2 4 2] - ap? 912} 1]

1
1.
% T 2. 2 2

(e - mg) I

where I is the identity matrix.

in (4.21) and combining, (4.21) becomes the N

symmetric form

™ (a + yb) 1

Now by factoring Ap2

1

1

Ceecescer et 1

(& +Yb) 1 teereennnns 1

-1

1
2 2
C = .
(Nl, Y) = Ap 0,° .
1 .
1.
where
* 2 2
(p,y + ) [6,5 + 07
e S e O
2 2
A
P "
1
and
*®
b = i

2 2

Ap Ol,
i

For compactness, set

c =a+yb

yielding the system matrix representation

2

1.

1

¥ % 2
+
1 (p14 pl2)[®1i+°

ceee 1 (a + vb) |

2 —
1.

i
2
i

.. Ap2 ]

...Ap2 Ol

2]

(4.21)

612 from each term

dimensional, square,

(4.22)

(4.23)

(L.2L4)

(4.25)
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c .
1 ¢ 1 .iiee.e. 1l

C(Ny, y) = |. (L.26)
i seeseesensese 1 c

The matrix C(Nl, y) is of full rank and a general inverse of (4.26)
substituted into (4.6) would yield the specific form of the weighting

operator H . However from (4L.7) and (L4.26), (L.6) can be rewritten
i

and the equivalent of a general inverse can be more readily obtained

in compact form. Thus (4.6) becomes

C(Ny, ) Eo (Ny, v, 2) =0 ap7h 1 (4.27)

Now a full rank system of equations such as (4.27) has the form
CH=g (4.28)
with the alternate form of solution given by

E=c|™ c*g (4.29)
where C* is the adjoint of the cofactor matrix for C. Consequently,

the kth element for H is given by

N
-1 1
B o= lc|™ ] g Core (4.30)
N =1
1
where Z g2 Cst is the expansion of the determinant formed from C by
=1

replacing its kth column with g. However in (L.27)

1
-1 ~11 .
g=1N, Ap™" 1 =N, 4p : (4.31)
1
and it can be shown that
Ny . N
] g C,, =N, 2p (1) ] C k=1,2, ..., N (4.32)
% 1
o1 2k gy ik 1
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In particular, by the specific nature of the symmetry of C(Nl, Y),

! (N7-1)
c. = (e-1) k=1,2, «o., N (4.33)
Lk 1
=1
ahd thus the elements of Eo (Nl’ Y, Z) are given by
i (N,-1)
- - 1
Ho, (N, v, 2) =1y ap™h [c|™>  (e-1) 5 (h.3k)
i
k (Nl)
K=1,2, «ooy N
where |C] is an Njth order determinant of the matrix C(Nl’ vy). 1In

()
order to complete the development of Eo.(Nl’ ¥, Z) into a compact closed
i
form, it is necessary to obtain a compact closed form expression for
lCl . Since C is of full rank, it has N_ distinct eigenvalues, A

( 1 E
N_)
and t%us a similarity transformation, T, exists such that

T T = [3] (4.35)

where [Ak] is the diagonal matrix of eigenvalues of C and is similar to C.

Furthermore, since eigenvalues are invariant under transformation,

N

1
|c] = |21 =T7 a (4.36)
(Ny) 8 k=1
Also
Ny Ny
TrC= )] M= 1 o =Nc (4.37)
k=1 k=1

Consequently, from (4.36), (4.37) and by the process of induction, the

closed form expression for ICI becomes
(m;)
(Nl—l)
lc| = (ec-1) (c + [Nl—l])t {(4.38)
()

Thus with (4.38) and (L4.34), the operator for the ith element becomes,

at the Nlth combination gtage

H N,v,2 7 )=
1

-1

|+

(4.39)
(N + (c-1))
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The iterative format of the recursion is not yet obvious, however, the
apparent requirement of time dependent weighting can be deduced from the

appearance of Nl'

4-3. The Recursive Operator Format for the Bi-Polar Signal Pattern Model

Recalling (3.16), the weighting estimate of the ith element of the

discrete pulse, 91’ is given by

) \w
~ 1 =1 1
*
(wy)
Dropping the term Z for simplicity, and incorporating (4.39), (L4.L0)
becomes
-1
~ 1 Ap Nl 1
6, (M) === 1z, (L.41)
i Mo+ (-] TR

where, from (3.11), by subscripting, the vectors become

inj 7 [z 7
25 z; (k)
5= |- - |- (b.42)
_?iNl— 25 (N )_
In particular, suppose j=1, the initial separation, then for w;, the
combinations are as follows,
- A ~1 ,
0;(1) = ¢ 2 z; (1) (4.13)
[1 + (c-1)]
51(2) = %- TET%—%E;%TT z, (1) + TE—%—%E;%TT Zi<2)) (4. hk)

Now, by substituting (4.43) into (L.LL), éi(2) becomes
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N -1

A 2[1 - (c-1)] 2 A )
6.(2) = = [ {2 7 (2_17] 03(1) + TET:T%i;ffTT zi(2)] (4.45)

Finally, following the substitution (L4.43) through (L.45), (4.41) yields
the iterative format of the recursion at the Nlth stage,

Ny (Np-1 + (e-1)) . il

~ i 1_
05 (M) = [ (e I e+ (emn) Zi(Nl)) (Nl 6)
b

It is immediately seen from (4.L6) that the weighted combinations have
a definite observation-time dependence. For any value of the coefficient
(c-1), the effect of the time weighting is such that, in obtaining up-
dated values of éi(Nl) by a weighted combination of zi(Nl) with éi(Nl—l),
the weighting of the "accepted" observations incorporated in éi(Nl-l) is
larger, for positive values of ¢, than the weighting for the nev obser-
vation to be "averaged" in. Also, it is seen that the time dependent
weighting coefficients,

Ny (Ny-1 + (e-1))

W (N,) = (L.u7)
el (Ny-1)(Ny + (c-1))

and
Nl
wz(Nl) = (4.48)
(Nl + (e-1))
have
Lim We(Nl) = Lim WZ(Nl) =1 (4.49)
Nlem Nl+m

however the rates at which each approaches unity differ and depend upon
the coefficient (c-1). From (L.23), (4.24), and (4.25), it is seen that
¢ is a function of p *, P *, SR 02, and y. It will be shown in the

11 12 1;

next section, that for the low-signal to noise ratios considered, an

adjustment of the La-Grange multiplier coefficient y for "maximizing" the
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convergence rate, renders the observation time variable, Nl’ dominant

in w (Nl) and wZ(N

o ) and hence the weighting operator and related weights

1

become non-parametric in this sense.

Loy, Adjustment of the La-Grange Multiplier for Maximizing
Convergence Rate

The analysis for the adjustment of the constraining coefficient pro-
ceeds as follows. From (3.32), the ith element of the normed distance

measure functional is

2

- _2 g 2 1 .
bplHo(Nys v)) = 0% - g= B (W), v)0, dp L+ =55 H (N}, v)
i 1 i Nl
t
S22 2 H (N, y) (k4.50)

and upon the substitution of (L.9), the rate of change of normed

distance, closure or convergence, immediately follows as

-2@12 Ap
3 i
H = —_ =
2, 2
Ap<6, N, (N_+b
, (gl +0y)  28p70, N, () )
2 3
(W) + bly+1]) (N, + bly+1])
(4.51)
where
— 2 - 2 2
bl = 20,° Ap(1 + Ap) b, = b Ap 0,
i i
I RO
1 8 teesssssnses 1
A= |: (L.52)
I T -
and a is given by (L.23). Since
1
1 Al=T(a+ Nl-l)
' (4.53)
i i - N]_
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from (4.39) and (4.53), Pg can be normalized and becomes

bp(H (N, v)) X
P = 5 = = +
D 201" Ap (N + o [y¥1]) (M) + b[y+1]
1

(l+Ap)Nl + b Ap

)2

Ap N, (N, + b)
P (4.54)

(N + bly+1])3

eg., wD! is the normalized closure rate for the ith element of the

discrete pulse waveform,

= {||s

(B, - 8, (L VIR (1.55)

The associated normalized convergence or closure acceleration follows

from (L.5kh) as

1
B Ap 012) 1N, (14b7)+ B + 2452 0,2
v = W YR (2 + ap) (p Opy) M (40y)+ 5+ 2807 6y
" - - -
P 202 ap (g + blyr])? oy b))’
1
. 3Ap Nl(Nl +b) (1.56)

(Nl + b[y+l])u

The remaining measure, Vs is associated with dispersion and from (3.36)

802 05 b
bp(E (N, v)) = — Ho(Ny, v) T H (Ny, ¥) (h.57)
Ny
From (4.39) and (k.53),
: N3 ap7?
H (N, v)I Hy(Ny, v) = 5 (4.58)

[N, + (a-1) + yD]

and thus wE becomes

eli Ny
Yo (B (N, ,y)) = (4.59)
BT [(N, + a-1)/b ++]°
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Consequently, from (4.59), it is seen that for any stage No»

-1
Yp ¥ == (4.60)
Y2

and the dispersion of performance with wE as a measure is reduced by
large positive values of y. At the same time, from (4.54), the conver-
gence or closure rate 1s enhanced when the negative term is dominant and
yields

o (E(Ny, v)) <0 (4.61)
In particular, the closure rate is increased by the assignment of small

positive and possibly negative values to y since, including the operation

57 o (B (1, v)) = 0 (4.62)
would yield some Yo @S

oy Yoo (Np) + oy ¥ () + ag = 0 (4.63)
Recalling (4.23), and for small signal to noise ratios,

I16]1°/02 << 1 (4.64)
produces a value of y, under the above operation, for "maximized" con-

vergence without invoking any constraint upon the dispersion, wE’ as

Ny

A KN(KN - blp)

2
z 2R -
Y, * Ky e+ - 1 (4.65)

From (4.56), it is seen that the measure of closure acceleration, wD" .
is largest when the positive term is dominant. This.condition is
compatible with (L4.54) in form, in that the same range of values for y
results in a negative rate of change of distance (closure). At this
point, from (k4.54), (L.56), (4.59), and the ensuing discussion, it is
obvious that a trade-off between dispersion of dynamic performance and

closure or convergence rate and acceleration is required. The required
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trade-off is not obvious analytically and results are arrived at experi-
mentally by digital computer simulation of the processing with various
constraint coefficients. These results appear in Chapter VI where this
method is compared with a feed-forward mixture resolving method, the
conventional decision-directed method, and the matched filter. In
particular, it is seen from (4.23) and (L4.64), that for the low signal

to noise ratio range, the coefficient of wD" wD"’ and wE is

1
N+ b(y+1) : (.66)

and hence the weighting is primarily dominated by the time (stage of
observation) and not as much upon the parameters of the mixture, and
hence, in this sense is 'non-parametric".

_h—S. The Optimized Weighting Operator for the General Two-Category
Signal Pattern Model

For the more general two-category signal pattern model given by

6, =G 8y (4.67)
where
G = [51, cees By oo 5n] (L.68)
The operator elements in (4.3) take on the form
_ * 1 »*
277y O vgy 8Pl (k.69)

Also the elements of

C(Ny, ¥) = [R + y(R - M)] (L.70)

become, from (3.48) and (3.50),

* * t * *
= 2 2 .
rkSL (pll Oli + Pio &4 _9_1) + (Pll + pl2) < Nik ngf k # ¢ (h.71)
and

2

= = * 2 * ' 2 * *
Tep T T = (P eli + oy, (g 8)9) + (P + P1p) 04 (4.72)

k=2
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Likewise, from (3.53) and (3.54)

* * 1 2
= - . = “ee h.
me, = (g ®, F P& 8,) k8 =1, 2, «oey Ny (4.73)
Finally for stationary, white noise, from (4.18) and the above,
e * a2 * 0 2 * ®y 2
(rep = m) =Apyy 017 +pyp (g 8,)7) + (pyy + pyplo
* * ' 2 _
= (pyy Oy *Pyp gy 8y) Yk =2
=0 k # 2 (L.7h)

Thus the general model matrix given by (4.70) becomes

C(le Y) = [[er] + vy ([rkl - ka])] (L.75)

and by factoring and combining terms, can be reduced to

kk
1 c 1 . 1
Kk ceeenne
P Crk
L -
where the diagonal terms are
r r., -nm
kk kk kk YRTHE I
o = o y| (b.77)

kg Tk

The equivalent of (4.27) for the general case now becomes

(w ) '
C(N,, ) goi(Nl, v,z Y)=m @1i(P1; O, + & & pi5) L (L.78)

and following the techniques from (4.28) through (L.41), the form of

the general weighting operator for the ith element is

(Mo v) = M) ™ (4.79)
[Nl—l + (rkk + Y(rkk - mkk))/rkll

H
o4

Likewise, following the procedure from (4.40) through (L.L46), the

iterative format of the recursion takes on the form
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1
e

8 (N ) = {wg(Ny) &, (W)=2) + ryep” Wiy (W) 23 (W)} - (4.80)

1
and is similar in appearance to the form for the bi-polar signal pattern

model given by (4.46). However in this case, the weighting elements

(M -1) (N + (cg-1)) (k.81)
and
w (N)) = N
2 A (e 1) (4.82)

contain the coefficient ¢, , which from (4.77), (4.71), (4.72), and
(4.74) i to depend t has (p;r 0, +p,5g 8.)

T is seen to depend upon terms such as (p,; 14 P, & 8,0
This presents a completely different problem, in that, the previous
factoring and adjusting of the weights for low signal to noise ratio
cannot be carried out. Specifically, since G is unknown, it is not
readily established how the constraining coefficient, y, might be
adjusted for low signal to noise ratio conditions to render the weighting
primarily observation-time dependent. Thus, for this more general case,
the required operator characteristics, for this formulation, are

developed to this point and no simulation studies are carried out.
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CHAPTER V

DEVELOPMENT OF A FEEDFORWARD MIXTURE

RESOLVING DETECTOR STRUCTURE

5-1. The Feedforward Signal Processing Structure

It is recalled that the work in previous chapters contains the
development of a signal processing structure which computes a decision

statistic, E&Ntl) z(Nfl), ang gates the observations, through

= * {Ek}N+l’
(g ¥) (1)
to operators, H (N_, vy, Z ), H (N, v, Z ), for optimized,
o'‘"1 = o2 -

weighted combination and reinforcement of the structure h. The funda-
mental character of the reinforcement, in that case, is of a feedback
nature, and the data processing structure is illustrated in Fig. 4-1.
In Chapter II it was shown that, relative to an estimating category,
J e {J,.}g, the average conditional error probability is minimized when
the detector structure takes on the form given by (2.40), where the
elements of the structure are linear substitutions of the estimating
category J. The actual values of the dynamic and asymptotic, average
conditional error probability depend upon the properties of the cate-
gory, J, in question. The specific category, JO, developed in the
previous chapters was based upon the minimization of distance and
dispersion functionals, wD and wE’ respectively; with a constraint
coefficient, vy, adjustment for maximization of convergence or closure

rate and acceleration, wD" and wDu
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It is the object of this section to consider a feed-forward detector
structure, where the raw mixture observations, {Ek}N+l’ are processed by

a mixture resolving structure in order to generate the parameters,
R (wl) R (ME)
{0} {6} , for reinforcement of the structure, h(N), and classif-

N+12 N+1

ication of the observation, gﬂN+l). The fundamental difference between
the feedback and feedforward data-processing structure is the following.
In the feedback structure, QKN), carries out a classification operation
upon z(N+l) prior to extraction operations upon z(N+1) to reinforce h(N)
to h(N+1). In the feedforward structure, z(N+l) is operated upon by

the mixture resolving operator to extract information for the up-dating
or reinforcement of h(N) to h(N+l) prior to a classification operation
of z(N+1) by h(N+1). A basic block diagram of this operation appears in

Fig. 5-1, where {Ek} is a sequence of binary decisions as in Fig. L4-1,

N+1

e H(Na z)
(w,) (w,)
A 1 ~ 2
(2 {e}N+l ‘{G}N+l
Zy {x }
N+1 Eﬂf+l) ;?k N+l

Fig. 5~1. Feedforward Structure

5-2. The Moment Mixture Resolving Categony,:ﬁi

Thus it is of interest to develop a mixture resolving category,
J e {Jr}R’ consistent with the feedforward concept which inherently

requires operation on the raw, un-pre-processed observations, {Ek}N+l
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There is no specific optimization of the category in this case, and the
category selected is the moment mixture resolving category, JM. It was
pointed out in Chapter I that the moment method was first applied to the

17 18

mixture resolution problem by Pearson and Rao, and subsequently by
Rider,l9 and Blischke.<0 All developed point estimators for the param-
eters of the mixture by the method of moments for the one dimensional
case. Pearson and Rao were concerned with the gaussian mixture, Rider
treated the exponential mixture, and Blischke worked with a bi-nomial

mixture. Chang23

developed moment estimators for the means of a four-
category multi-dimensional gaussian mixture, however his moment method
required apriori knowledge of the noise statistics. This chapter is
concerned with the development of moment estimators for the two-category
multi-dimensional signal pattern model which does not require apriori
knowledge of the noise statistics, and the development proceeds as
follows.

There is no formal, systematic method for developing a system of
equations, such as in the previous chapters, to resolve a mixture of
observations by the moment concept into some parametric decomposition.
Rather, the approach is one of analytical trial and error, the object
being to obtain a desired system of equations for the parameters in the
mixture. The specific desired system of equations depends upon the
signal pattern model assumed and the apriori information available. If
the noise statistics were known, for instance, then the desired system
of equations could be parametrically independent of the noise statistics,
however should a specific system of equations be parametrically dependent

upon the noise parameters, such dependence, in that case, would not
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prevent resolution. If the noise statistics, along with the discrete
pulse waveform, are unknown, as assumed in this work, then the "desired"
system of equations must be independent of the pulse and noise param-
eters. The moment method of mixture resolution consists of first equat-
ing raw or central mixture population moments to raw or central mixture
sample moments and subsequently combining the raw or central moments,
linearly, non-linearly, weighted, or unweighted, in order to arrive at
the "desired" system of equations. In this development, a number of
first moment, auto-correlation, cross-correlation, and higher moment
equations were examined prior to arriving upon the appropriate combina-
tion of moments to satisfy the apriori information constraints; thus
yielding the desired system of equations.

Proceeding, consider then the raw mixture of observations, {z } ,

%N
~ -
where Z
s ,lk
Zp = Qk + Ek A ; k=1,2, ..., N
.k
AR
Ik
Zn
| "k (5.1)
and the auto-correlation matrix of the kth observation,
R =[r (1,501 = 1[r;.] (5.2)
zZ 2z ’
2z % 1)
where
Tie = < 2., Z. >=9<137. >< 25 > i,j=1,2, «e., n (5.3)
i !
J i i jk

and < > denotes the expectation over the mixture. From (5.1),

< Z. zZ., > ={< 6. 0, > 4+ < Ni 6. > 4 <:ei N. >
Kk k Yk k Yk kY%
+ <N, N, > (5.4)
e




o7

< gz.> = <8. > + <Ni > (5.5)

<6, 6, >=p, (67 67, ) +p (65 05 ) (5.6)
1y Uy 2 iy g
and
<8, >=p8, + Dby, (5.7)
ik 1 1lk iy
since 91 and el are both elements of the discrete pulse waveform
X e
within the same time slot and,where, for the two-category mixture,
P, = ‘P{g_k ew}l 3 p, = P{g_k e wy} (5.8)

As in the previous chapter, for zero-mean, white noise,

<N; N,> =<N; >a <N, >=0 (5.9)
1k jk ip Jk
and using (5.7) and (5.8), the elements of R, , become
“k Tk
<z, z, >=py(6; 681 ) +py(6y 65 ) 1% (5.10)
'k Jk iy g Tk Ik
and
= 2 2 2 -
< gz: Z, >=<2:¢>=7py 8 + ps 0 +0;° 1i=3 (5.11).
. i 1 V1 2 . i
1k Jk 2lk
Also
<z, >= 9 + 9 5.12)
i P i, P2 24, (
and in general,
8, = Goy (5.13)
yielding
|
6, =g. 6 121, 2y vauy ds eeep (5.1h)
21 E,l =1 ’ s 1 B 1)

It is then necessary to combine equations (5.10) through (5.12), using
what apriori information is available from (5.13) in such a manner that

the solution for the @'s is independent of the noise.
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5-~3. Multidimensional Moment Estimators Requiring no Apriori Noise or

Pulse Waveform Information.

Consider the bi-polar case again, where apriori knowledge of the

bi-polarity provides apriori information about G in the form

G = kI 5 k=-1
Then _ -
01
& < Oi—l gii = -1
gli
oi+1
Lpn —
and
0, = -0 i=1, 2 ces J
21 li 5 > b ] L) >
yielding
<z, 2% > =0 o i#3
1. 1
e Jx iy g
and
_ 2 5 = .2 2
< Z. A > = < 7. > =0 + O. 1
lk Jk lk llk 1

< 7. > = (pl - p2) @ll
k

Sin¢e all subsequent discussion will refer to the

since the noise is stationary, the subscripts, k,

(5.15)

(5.16)

(5.17)

(5.18)

=J (5.19)

(5.20)

kth observation, and

associated with the

moments and, 1, associated with the variance of the noise samples can

be dropped. Recalling (5.3), the above development, and assuming that

the two pulses have equal probability of occurrence,

rij =< z4zs>=-<132y> < Zj > = Ol- 0

J J

r.: = < g

i3 2 s - < z3 52 = 91.2 + g2

1 i

1; i#3 (5.21)

i=3 (5.22)
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2 2 - 2 2 PR
= < > - < = + = 2
rjj Zj Zj > elj ) J 1 (5 3)
Now considering
= 2 2 _ 2 _ 2
T - Ty T Oli + 0 Olj o (5.24)

it ig seen that the noise variance is eliminated. In addition, from
(5.21)

0, = r5y/0] (5.25)
In view of the bi-polar apriori information from (5.15), the subscript,
1, can be dropped, since whatever the value of a specific éi(N), the
specific value of the other category is the negative of éi(N). Now with

2
(5.24) and (5.25), a quadratic equation in 63 can be developed as

J
y 2 2 _
O.j - (r,j,j - rli) Oj - rlj =0 (5'26)
Also, by rewriting (5.25) as
2 2, 2.
Glj —'rij/ Gli-, v (5.27)

and taking the negative of (5.24), a similar equation for the ith
element of the discrete pulse waveform is obtained,

o; - (ry; = ryy) 6F - ri§ =0 (5.28)
It is appropriate to point out, at this time, that as long as there are
only two categories, and auto-correlation or cross-correlation matrix
elements are used to combine and develop a system of equations, the
resulting equations will always be quadratic in the unknown elements of
the discrete pulse waveform. From (5.26) and (5.28), the form of the
estimates of the category JM for the moment method of mixture resolu-
tion becomes,

2+ r,2)% (5/29)

A = (1 _ 1 _

1= 1,ciesjseessn
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and

1
%2

)2+ ) (5.30)

- ryg) * (4 (rgg - 7y
J=1lyeeasiseeeyn
Recalling the previous discussion, the moment technique consists of
equating the population moments rij to the mixture sample moments of the
corresponding population moments. For the population moments given by
{5.21) through (5.23), for the bi-polar signal pattern model, the corre-

sponding mixture sample moments are given by the norms and inner

products respectively

v, (W) = 1|z |2 121, 2, very Js eees m (5.31)
- 2
rjj(N) =yt l|§d|| (5.32)
rij(N) = y-1 (zl, Eﬂ) (5.33)
where -
Z .
1
E = Zi i=l, 2, ceay ,j, csey Il (5-3h)
R ™
%5
| P

is the vector of samples at the ith instant of each of the N time slots.
Hence a substitution of the mixture sample moments given by (5.31)
through (5.33) into (5.29) and (5.30) yields for the mixture resolving

estimators of the ith and jth elements of the discrete pulse waveform

at the Nth stage,

%

(
. + +
i

0 (W) _'{(H_Z_l[ |2 B ||EJ| |2) (||_z_.J| |2 - ||El| 12)2 2, EJ)E '/2}
- eN yN° 0 |
(5.3

.35)
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L %
. 2 2 2 2

- _{(HEJII - [zg |19 \ (Hzgl 12 = Tlzg117) . (25, z4) r}

J oN LN2 N2
(5.36)

5-4. Convergence of the Mixture Sample Moments

The convergence or consistency of the estimating category, d the

M?
moment method mixture resolving category, follows from (5.18) through
(5.20). In particular, since the mixture of observations, {Ek}N’ con-
sists of a sequence of N, independent, n dimensional random vectors,

then the ith element of each vector constitutes a sequence, {Zi}N’ of

independent, identically distributed random variables. In addition,

2 2 } 2 2
the elements of [|gi|| > |15jl| » and (z,, Eﬁ)’ given by Zigs veeo ziN;
2 2
“es 5 Z. cee . s it th f
zjl, s ZJN’ z11 24, > 25 By constitute three sequences o

independent, identically distributed random variables within each
sequence, since one ith square, one jth square, and one ijth product is
taken from each independent vector. With the above, and from (5.18) and
(5.19), since the population moments over the mixture, <z§>, <z§>, and
<z3 Zj> exist, then by the Kolmogorov theorem for the strong law of

large number, these are necessary and sufficient conditions for

P{Lim %Hﬁin: ii-e§+02}-1 1 21,2, veey Js eoes
N-soo (5.37)
and
1
P{Lim % (z., 2,) = r:, =0, 0,} =1 .38
{Nig N (gi 53) rsj i j} (5.38)

and hence the mixture sample moments of the elements of the auto-

correlation matrix, R,

zsare said to converge with probability one.

A

Consequently, sequences of random variables, {Gi(N)}N, formed from
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conbinations of |l§i|12 and (Ei’ Eﬁ)’ as in (5.35) and (5.36) obey the
law of large numbers and thus the mixture resolving moment estimators
for the elements of the pulse waveform,‘ﬁi(N), converge with probability
one.

The mixtiure resolving characteristics of the category JM’ given by
(5.35) and (5.36) are established by digital computer simulation of
noisy signal patterns, the moment mixture resolving operations, and
signal pattern classification of the mixture of observations by the
feedforward structure discussed in section 5-1. The results of the
simulation are discussed in Chapter VI and compared with the optimally

weighted feedback structure, the conventional decision-directed

structure, and the Bayes matched filter.




63

CHAPTER VI

DIGITAL COMPUTER SIMULATION OF THE SIGNAL PROCESSING ALGORITHMS

6-1. Conditions of the Digital Computer Simulation

In order to test the performance of the two "mixture resolving"
detector structures established in the previous chapters, digital
computer simulations were developed for noisy binary signal pattern
models, the data processing algorithms, and the actual signal process-
ing. The data processing algorithms studied experimentally, via digital
computer simulation, were;

(1) The "Convergence Rate Optimized" Feedback Detector Structure
(Chapters III and IV)

(2) The Moment-Mixture-Resolving Feedforward Detector Structure
(Chapter V)

(3) The Conventional Decision Directed Detector Structure.
A simulation of the classical Bayes matched filter detector structure
was included, under identical signal observation conditions, in order
to establish some absolute standard of comparison.

The noisy signal pattern model consisted of a sequence of discrete,

Sy
N

of proportionality, P, and p2, subjected to additive, white, zero-mean,

independent, n=dimensional, binary, pulse vectors, {6, } , with parameters

gaussian noise; giving rise to a two-category, n-dimensional mixture of

observations, {gk} ,» as discussed in Chapter I. The probability density
N

function of any observation, Ek’ is thus



6k

p(z) = p, N8y, 0) + py N(8,, 0) (6.1)
where 0 is the inverse of the noise covariance matrix. The binary signal
pattern sequence, {gk}N, was simulated by selecting fixed vectors, gi
or 92’ at random, successively, with probabilities Py and P, dependent
upon the outcome of a uniform random-number-generator subroutine. The
additive noise pattern was simulated by an uncorrelated gaussian random

number generator subroutine approximating N(0,1). The generation of the

noisy signal pattern model is illustrated in Fig. 6-1(a)

P(u) :
Uniform Random 1 |
- Number P, P2
I Generator \ _
2 I u, 1 u
i o)
|
|
u<u {e,} {z, }
— =Xk
I 7 ° N ™y
e i,E O > + >
(-] |
| u > uo
| ) {N.}
| =y
|
! Gaussian Random
]

Numbe
Genera%or

Fig. 6-1(a). -Generation of Noisy Signal Pattern

The noise variance was maintained at one and the signal to noise ratio,

given by

snr & Hg_1 - g_2||2/o2 (6.2)

was adjusted by adjusting the energy of the discrete pulses; e.g.,
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|I_e__l - §2||2. Various discrete waveforms were considered, including
the on-off case. In view of the extent of the analysis and development
for the bi-polar case, this was chosen as the case, to be treated for
all of the detector structures considered. Thus, with

G=XxI ; k=-1 (6.3)

o () = ut 0 <t < MTg (6.4)
yielding the discrete pulse
8 =i 0<i=<n (6.5)

where i is the discrete time increment. The slope, norm, and thus SNR
could be adjusted by the scalar p. For each SNR case, M = 50 independ-
ent sequences (members), were generated and processed, where each
sequence {gk}N, consisted of N = 300, n-dimensional vector observations.
In addition, the simulation was developed such that, for a given SNR case,
the processing of a given member sequence, {Ek}’ of the 50, was carried
out by all of the detector structures under identical input conditions
in order to allow a study of relative performance characteristics on a
given sequence. The range of SNR selected for experimentation, under
the conditions imposed by (5.2), was

-9.48 d@b < SNR < + .96 db (6.6)
For the simulation, the dimensionality of the pulses was selected to be
n = 2. The pulse vectors corresponding to the lower and upper ends of

the SNR range were thus
.15 .50

2 8 = (6.7)
.30 1.0



66

which were added to noise with a variance of one. A typical sequence,

{gk} , for the "low" end of the SNR range is illustrated in Fig. 6-2.
N

6-2. Simulation of the Convergence Rate Optimized Feedback Detector
Structure

A block diagram of the data processing by this algorithm is illu=
strated in Fig. b4-1. The decision equation, for the feedback structure,

from (2.3) is

2(2(0) = B'(N) z(W+1) > 8 (6.8)
< %
o
with the discrimination, or detection vector operator, from (2.40)
given by
h(N) = o(N, 2,.) (N, Zy) (6.9)
The elements of the vector operator structure are
* *
~ ~ (wl) " (wz)
s(N, z,) = il(Nl’ z ) -8,(N,, 2 7)) (6.10)
where
—n -
(¥,)
.12 L
* eiz(NQ)
. (wy) :
QQ(N » Z ) = . ; =1, 2 (6.11)
o_ (N,)

with the "optimally" weighted estimate of the ith element, from (4.40)

and (L4.41), given by
~ -1 .. -1 N !
0, (Ny) =N H (N ) z. =N 2 1 z
2 2 s Y/ Z. . S G .
1y ~o; 4 S W, + 1] i

(6.12)
From (4.46), the recursion, normalized with respect to Ap, is iteratively

expressed as
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A _ - 1
Gzi(Nz) = {we(Ng) @li(Nz-l) + WZ(NQ) zi(Nz)} iy (6.13)

Since the mixing parameters, pi;, are unknown, actual processing
requires the above normalization, which has the effect of producing an
asymptotic, SNR dependent bias on éz (N_); a result that can be seen

2
i
by taking Lim of the expectation of éz (Nl)’ as given by (4.46), over
i

Nooo
*
the submixture ws . From (L.47) and (4.48), for the low SNR case, the

coefficients are

N (N -1+ Y)
- £ 2
o) = wm, T (6.14)
and
Ng
WZ(NQ) = m (6.15)

From (6.13), it is seen that, initially what corresponds to N, =1
has the requirements, that

0, (1) = w

3 O(l) @2.(0) + Wz(l) zi(l) (6.16)

i i

in essence, that zi(l) be combined with O, (0), some apriori reference.
i
In order that this "apriori reference" reflect information about the

population w_, and still preserve the structural form given by (6.9),

.
consider
n' (0) 2(1) > & (6.17)
< QO
Now since
n(0) = 8(0) §(0) (6.18)

in the absence of a difference, §(0), the simplest "pure'" measure of
information about the population value of § is

8(0) = z(0) ; 6(0)=KTI (6.19)
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such that (6.17) becomes
h'(0) 2(1) = 2'(0) 2(1) > K¢ Hg (6.20)

< K1y H
o D

These assumptions are discussed in the section which follows (section 6-3).

Now from (2.9),

b, = (Ba'(0) 2(1)] w ] + E'(0) 2(1)] w1)/2 (6.21)
where, from (6.20) and the bi-polar case,

2)

n

|12 (6.22)

E[R'(0) 2(1)lw ) = (% + 2%) |lg,

and

E[n'(0) 2(1)]w ] = -2pip, |18y |17 (6.23)

and where Wg and wy are the spaces of two adjacent similar and dis-similar

vectors respectively. For P, = Pp = 1/2, lo = 0, and regardless of the

noise variance, the above threshold is zero andis minimax for this case.

A

Thus the initial reference, O2 (0), is extracted from the observations

by correlating the '"first" obs;rvation, z(1), with the initial observa-
tion, z(0), and isolating both to w;, both to w;, or separated, as
discussed in Section 3~1. The classification space for the initial
separation is illustrated in Fig. 6-1(b) where pl2(j) and p2l(j) are the

error probabilities in similarity and dis-similarity as given in (3.4k).

1
[}
i
[}
|
I
|
*
PoT . P11
1

|
|
I
I
[
i
|

O -]

ZT(N-1)2(T)

-1y 11%72 [ley 11272

Fig. 6-1(b). Decision Space for Similarity Tests
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Subsequent tests follow (6-8), and the elements of §KN, ZN) are up-dated

in the manner illustrated by (6.10) through (6.15). The matrix, é(N, EN)’
is given by

~ a=] ' -1
= X = ( \
o(N, Z2.) =& (W, Z.“.) [Aij(N)] (lam)l (6.24)

where, in view of the stationary noise assumption (equal noise covariance),

A

the AiJ(N)'s are cofactors of the elements, S;;, in T(N, ZN). The

elements in I(N, ZN) are given by
* *
. A(Nl) M((ﬂg) ;
sij = l/z[sij + S'ij ] i,j=1, 2, ve.p n (6.25)
where
* N ¥ *
L (wg) 2 : (wp) = . ) (wy) S )
. . = = z, - oe.(n,))(z. ‘- 09.(N =1, 2
* (6.26)
A<wl)
The pooling of the indi¥idual elements, Sij with corresponding
(wg)
individual elements Sij , in order to obtain the elements Sij of

5 (N, ZN) is carried out in order to allow for a comparison with the con-
ventional decision directed system under identical conditions for the
£(N, ZN)' In the absence of a required form in (6.25), a computation

of the pooled covariance elements would be more correctly carried out

26

by using the within-between method

The ith element of h(N) then becomes

AV

h (W) = 8, (N, 2y) 8(N, Zp) (6.27)
where éi(N’ Zy) 18 the ith row vector of the matrix in (6.24). For the

case n = 2, this yields

hy (N) = (As(N) 8, (N) = A (N) §,(N)) |A(N)
1 e2i’n L 127 "2 | (6.28)

hy(N) = (=Ay (1) 8 (W) + A (W) §,(1) [a(m) |~
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It was illustrated in section L-U4, that for the signal to noise
ratio range defined by (6.6), the weighting coefficients given by (6.1k4)
and (6.15) are dominated by the observation time, N,, and the constraint
coefficient, v, e.g.,

5 N,Q(N,Q:l + y)

volly) (g-1) (g + v) (6-29)
and
. N
WZ(NQ) < HI—Q—TY—)— (6.30)

Numerous data processing simulations were carried out with y ranging
over a 10:1 interval

1<y <10 (6.31)
The detection performance characteristics, represented by fg(N), averaged
over M = 50 runs of N = 300 time slots each, are illustrated in Figs.
6-3 through 6-6 for L cases of SNR and the two extreme values of the
constraint coefficlent vy, given by Yy and Yo. The analytical and computer
simulated values of F;(N) for the matched filter appear as a solid and
a dotted line respectively. The effect of y upon the convergence rate,
as experimentally observed, supports the analytical conclusions arrived
at in section Lk-4. A discussion of relative performance characteristics
is contained in the final section of this chapter for all detector
structures considered.

6-3. Discussion of Initial Assumptions on h and Alternate Procedures of
Classification

In view of the assumptions given by (6.19), since (8
-1 _

= kb3 k = -1;

and £ = 0 I3 n(0) becomes




P o e e s R Il atad d e iR T A . non
1 - [} A
* Q oo
L . - A
T m = =
* » o Tt o CE e | R 2 ER >
» L T B ERME RN e %
» -1 - - -kt =l - ..0* -
* AN NN o 4
& O S o T I N N S . 5
i3 * < Tk I z%
»* o rlr 1 &
© L - M- BERAS R
= : o
? 3 . . : 18 s
= AEERERE - |- B F T = -
1 * x (S el R i =1 @ M
| * - o - MM s i I H o o a
& e - e b b i Y bt Bt e e e b b B Bt Bt et B b B bt g -t o nu - K ‘__‘ [ 1401 SH A4S nﬁ
* S |
“ L. « b4 T+_A _ B Dnm
» o b - kR
* - =
- - - -+-H -+ |- R £
L3 . W g 2E
L o xS
» w e 1 = SR S
P e R L S TR O v.lv‘-lﬂ.t N Sl I S T . 0. % = o o e =t - i - CIEFE
* ~ c o EARNEN & WE h 1 1 P
» 11T CVEo o I ARN AN Ny
L w o
* * L8 LT LT 2
L « g - REREERRER AN REN 1S MENEN =
- [ ]
» v o
B I S N N A ak al Al Rl A R e R B RN N I . - [
» g e @ -
* [ 10 <, L] o =
* . 2 z ’
» 3 _U.\e
. £
- °
» u
* P
b ot od tmd bt bl o bme Bt Bt e g o by peh b bt bmf S D Bt bt g bt et bt bt bl e Bt B b B e 4 . o
» [
* ©n 3
* o
» -
»
- - M“
~ L o
: 2 i 25
e L R ) -y tl..".l'.. b ot et e e o 0. J_ =)
» - o
L] . HES B =
- 0 =
» Pl W Te
ol 5 : 2
L]
* 1l > @
z GIKS »
I e R A I e N e Ll R e A L L T . | 2
* (=] -1 -] o
- - ” A
» * N + o 4 nwv 8
* i T I- - BN IRt A 8 I g I 2 -
* . REER KR K R e =8
- "] N
P e A e el R e L e N N R . MQ,
v g T i - ol
» /] b
» p %0
. * B e ¥
e 54 u
* . gaEs '3 =
O N T R Y S SO PRy S SR T L L R Iy ey S . i I T "y -
» o Bl AEREENRN NS
» - &
L * T T 7T :
0
» ol
» L -5
-
» . -
P e Il I I I R S o S ] nw — n < " N -
. . . . . . . _IN\
m ~ ~ © - ~ m »
| I | o



+3757
3686

500
-

500
N ==
Pe(ls

Weighted Decision Directed

(SNR = -9.48 DB)

100

100

Conventional Decision Directed Pe(N)

==
)
g
t
+
i
0
i
!
I

T
I
T

R
T
iT
1
i
il
T
T
T
: h M
L]
T

Fig. 6-8.

e ————
T
[
[
P
=
T
PR
v T
T
.
T
HINE]
5
Fig. 6-6

T
L
D
Fe=a=—====%=

72

2907
L2877

]

—
ok
500
oy
Pe(N)

Weighted Decision Directed

100

Moment Resolution Peiﬂs

ey e g gy

‘Q
a
bl _. hal
n
- o1 o
_ | )
il _‘ ~ 7 i :
i SE .
EEEEE: 4 R 1o 28 o
[ iy o b ¥ SAREREE Ed NS '
T z - i 0
] (41 H auEl T .
H - 3 “ .
i “ A 3 £
Fd - - L &
L}
LR ' o0
] Kl
‘ A 7 =
]
e —
0 =

RN




T3

n(0) = XK 1z(0) (6.32)
The assumption, 6(0) = K I, implies that knowledge is available that the
noise is white, however, it is not known what the noise power (variance)
happens to be. Since it is further assumed that 121 =P, = 1/2, the
threshold, lo, given by (6.21) is zero, and the decision equation, (6.20)

becomes

h'(0) 2(1) =K 2'(0) 2(1) > & =0 Hq (6.33)

e}

which is equivalent to
g'(O) z(1l) >0 HS (6.34)
< 0 H

D
In view of the equi-probable situation, knowledge of the actual value
of the noise power (variance), given by K, is not required since Qo is
zero. The nature of the conditions established by the equi-probable,
bi-polar situation, for the decision equation., (6.20), utilized for
initial separation in this work, actually constitutes the minimax solu-
tion for testing the null hypothesis, HS(EXO) and z(1) both from wy or
both from w2), against the alternative hypothesis, HD(EﬂO) and z(1)
from wy and w, or Wo and wl). It is emphasized that the inner-product
statistic achieves this minimax initial separation for the equi-
probable, bi-polar case only.

There is actually a deeper significance® to the assumption §(0)=z(0).
For the bi-polar case, § = 28, and thus z(0) is taken for 26(0). Thus,

this interpretation yields, for (6.34)

* Personal discussion with Prof. K. C. S. Pillai, Dept. of Mathematical
Statistics, Purdue University, West Lafayette, Indiana, July, 1966.
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(0) 2(1) >0 Hq (6.35)

in essence, a referencing of the first observation with the above initial
estimate for one of the means. Under the above interpretation, it must

be recalled that the classical, minimum risk, decision equation, for two
25
gaussian categories is given by

[Qg]'Lg ~ %s] > log n Hitz e w (6.36)

< log n H2f zZ € W

where § = QQ - 91’ s = QQ + 91, and 0@ = Z_l. For the equal cost, equi-
probable, bi-polar situation in white noise, (6.36) becomes

8' z>0 Hl (6.37)

<0 H2
Thus it might be concluded, under the above interpretation, that the
assumption, §(0) = z(0), in essence assumes §(O) = %3(0).
It was suggested* later in this work, that initial separation might

be alternatively achieved by a use of the statistic

|l—2— [2(3) + 2(3+1)11]% > x
r'——"2 n

20
N < Xn2(a) H

2(a) Hg J =0,1,2,...(6.38)

D
for some desired significance level o, where Xng(a) is the associated
central chi-square variable for the null hypothesis, HD’ in this case.
The degree of freedom, n, corresponds to the vector dimensionality.
Each element in the norm of (6.38) given by
z.(3) + zi(j+l>

1
'20N2

(6.39)

* Pillai, op. cit.
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is N(0, 1) under the null hypothesis for the equi-probable, bi-polar case.
It is seen that a use of the statistic given by (6.39) would require no
assumption in regard to the relationship of z(0) to 8. Use of this
statistic would require a knowledge of the noise power (variance).

A second alternative for initial separation might be an application

25
of Hotelling's 72 statistic, applied under the following modification.
N %,
2 (w). oy (w)) 2
T=(N) = Ny [ZﬂNl) -8 ] (M) [Z(Nl) -6, 1 2T, Hy
2
< TO HS
(6.40)
where
re=_M 5 . () (6.141)
(M - n+l1) i

and M is the number of degrees of freedom associated with f(M); n is the

vector dimensionality. Also Nl ig the number of vector observations that
(wl):
have been pooled in Z(Nl) and 9@ , as indicated below, by the assign-

ment as similar under HS’ up to stage N. These vectors in T°(N) are

given as

(w)) (w)) ¥ (o

*
- _ 1 1 .4 -1
Z(N;) = (Ny 8, + z(N)) Ty 8 = = % z (6.42)

—~

3
w )
It is seen that 90 is the sample mean of the vectors assigned to wi

(grouped together as similar) by Nl outcome? Qf TQ(N) < TO2
w
1

stage N. During the test, at each stage, 90 is to be treated as a

prior to

constant.
Further insight into the relationship of T2(N) to (6.20), can be
developed if (6.40) is modified to consist only of the vector, z(N), under

observation, yielding
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]>rT (6.43)

The number of degrees of freedom associated with i(M) in T02 remains

as M. For I known or M large, such that

IM) = o f T (6.14k)
for the white noise case, (6.LL4) becomes a chi-square statistic,
(wy)
Q2(N) = _l§.||EjN) - 8, 1 ‘12 > x 2(a) HD (6.45)
N %
< Xn (a) HS

In either case, use of (6.45) would require either a knowledge of the

noise statistics or M classified Vecgors to obtain i(M), and thus 6N2(M).
(w))
For the initial stage, N = 1 and 90

z(0). Thus (6.45) becomes

P = ¢2(1) = |]z(1) - 2(0)] |7 > o x 2
2

2
<oy Xp (a) H

a) H (6.46)

which, upon expansion, yields the equivalent test,

1

z (0) 2(1) <

Ny

(€]1200) 12+ 1200 123 = 02 x 2(a)] 5 (6.47)

> 3 1] 1200) [P+ 12(1) ] °} - o °

N Xn2(a)] HS

This can be compared with (6.20), the statistic used for initial separa-

tion in this thesis, given by
1

z (0) z(1) >0 Hy (6.18)

<0 H
D

As it turns out, for the equi-probable, bi-polar case, the zero threshold

1]
for the statistic z (0) z(1) coincides with the minimax solution for

initial separation on the basis of similarity or dis-similarity of vector

means, and is related to the interpretation of z(0) as 6(0). It must be

pointed out that (6.48) applied successively simply carries out one-shot
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minimax separation. At the same time, successive application of (6.47)
in the form (6.45) would resu%t*%n an increase of information about 6

W
which would be reflected in go\l° given by (6.42). No actual computer
simulation experimentation was carried out for the alternative cases
since a knowledge of the noise statistics would have been required. The
tests for initial separation, as carried out with the use of (6.48),(6.20)
required no knowledge of the noise statistics.

6-4. Simulation of the Moment Mixture Resolving Feedforward Detector
Structure

The decision equation for this structure is given by

(6.49)

as discussed in section 5-1 and h(N) has the structural form given by
(6.9). The elements of the structure differ, however, and recalling

(5.34), the elements in (6.11) given by (6.12), for this case, are

i on
)C

Z. Z s
_1’ =J

(zg 121z 1192«
+ +

oN LN2 Ne }(6.50)

(zy 11211z, 11%)
5,(x) = { e d

The covariance, O(N, _Z_N), has the same form as (6.24), however, under
the assumption of apriori information necessary to develop the moment

category of Chapter V, the elements of @(N, ZN) are

Aij(N) =0 143 (6.51)
=g;;N)i=3 5 i=1,2, ..., n
with
N
5, (1) = v Zl(zik -8, (M) 1=1,2, ...,n (6.52)
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The remaining elements follow (6.27) and (6.28), except for the above

»

differences in 0,(N), A, .(N), and where, in view of the bi-polar model,
(N) - (-8,(N)) = 28;(N) (6.53)
The performance characteristics of this structure, as indicated by 5;(N)
for values of SNR identical to those used for the previous detector
structure, are illustrated in Fig. 6-T.

6-5. Simulation of the Conventional-Decision-Directed and Matched-~
Filter Detector Structures

A simulation of these two detector structures was carried out under
input conditions exactly ldentical to those of the systems developed in
this thesis, in order to establish a standard for comparison of per-
formance on a relative and an absolute basis respectively. The decision
equation forthe conventional decision directed structure is given by

2(z(N)) = h' (W) z(N+1) > o (6.5H)
< Ly
where the structure of h(N) is given by (6.9), however, where the
elements differ in a very fundamental manner. In the conventional
decision~directed structure, there are no specific, time-varying or
otherwise, weights and the estimate of the ith pulse sample corresponding

to (6.11) is given by

1
A —l ) : 6
eﬂ,.i(N,Q) B N,Q, 1 E’l 3 L= lj 3 =1, 23 (6.55)
. i=1,2, ..., n
1
| e |

with the iterative form
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6

[ (6.56)

(Np) = {(W,-1) & (N-1) + (1) 2, (W)}
i i 2

Zl’—'

which is fundamentally different from (6.13). The remalning elements of

the structure follow (6.24) through (6.28) with él (Ny) inserted as given
i

by (6.56). The decision equation of the Bayes matched filter, for com-

parison purposes is

'

2(2(M) = h_ z(N) > 2 (6.57)
< 2
where, for the bi-polar case
0ll 012
h =20 8, 3 o= (6.58)
21 22
o]

and where the elements of Eo’ for the conditions of the simulation are

hol=i—29ll ; h02='§§912 (6.59)
The characteristics of ?;kN) for input conditions identical to the
previous cases, are illustrated in Fig. 6-8. The relatively slower con-
vergence rate of the conventional decision-directed structure is evidenced
by comparing the results in Fig. 6-8 with those of Figs. 6-3 through 6-6.
In addition, for a typical noisy signal pattern with a SNR of +.96 db,
the convergence characteristics of the mixture resolving estimates of
the elements of 21’ for the weighted and conventional decision directed
algorithms, are illustrated in Figs. 6-9 and 6-10, for that particular
noisy signal pattern, respectively. It is seen that the weighted algor-
ithm achieves quite accurate stable values within 100 vector observations,
whereas the elements obtained by the conventional decision directed al-

gorithm are totally in error. This is but one illustration in numerous

cases, where the weighted algorithm converged accurately for a given
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noisy signal pattern, whereas the conventional decision directed algor-
ithm converged in error for that particular pattern.

The performance of the Bayes matched filter detector, as obtained
by the simulation, appears as a dotted line in Figs. 6-3 through
Fig. 6-14. This value differs slightly from the average probability
of mis-classification computed, for the bi-polar and minimax conditions,

analytically as

o0 0

P = (om)7 J exp (o] ax = (em) ™ [ exp [95%) ax  (6.60)
0 ey,

which is to be expected in view of the finite sample size, M = 50,

N = 300.

A comparison of the convergence characteristics for the moment,
weighted, and decision-directed structures is presented in Figs. 6-11
through 6-14 for values of SNR ranging froml96db4‘to -9.48 db., and
indicated by the letters M, W, and D respectively. In addition, the
average relative performance after N = 100 vector observations, as a
function of SNR, is illustrated in Fig. 6-15. Finally, a relative
comparison of the convergence characteristics and dynamic performance
properties of the weighted and conventional decision-directed structures,

with simulation. computed variance bounds, is illustrated in Fig. 6-16.
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CHAPTER VII

CONCLUSIONS

T-1. Summary and Conclusions

This research has been concerned with;

(1) A formal development of the structural form of an optimum
linear detection operator when the classification parameters are unknown,

(2) A formal development of mixture resolving estimating categor-
ies to learn or extract parametric information from the noisy signal
pattern (mixture) in order to obtain the elements for the structure.

The criterion of optimality for the detector structure has been the
average conditional probability of detection~error (misclassification).
A formal development of this criteria has shown that the minimum average
conditional probability of error at the Nth stage, conditioned upon the
mixture resolving estimating category, corresponds to the maximum of s
basically related, normalized, quadratic form. The maximization of
this form leads tb a homogeneous eigenvalue equation where the eigen-
values are the quadratic forms. Thus the largest eigenvalue of this
equation is the maximum of the quadratic form. By the nature of the
binary gaussian signal pattern model, the equation has rank one and the
maximum eigenvalue is established. The associated eigenvector, QO(N,J),

is the unique optimum linear detection operator. It is a function of N,
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the observation time, and J, the mixture resolving estimating category
reinforcing its elements. It is thus seen that the expectation of the
mixture resolving estimators, relative to their estimating category,
under linear substitution into the detector operator structure, Eo’ at
the Nth stage, minimizes the average conditional probability of error at
that stage, relative to the category of the estimators.

Two techniques, feedback and feedforward, have been developed to
reinforce the detector structure as the noise characteristics and dis-
crete pulse waveforms are jointly learned through mixture resolving
estimation. Characteristics common to both categories are;

(1) Neither category requires apriori knowledge of the noise
parameters or discrete pulse waveforms.

(2) Neither category requires apriori classification of the time
slots of the noisy signal pattern observation (mixture).

The mixture resolving estimating categories developed, consist of}

(1) An optimized, time-varying-weighted decision-directed category
(feedback reinforcement).

(2) A moment method cateogry (feedforward reinforcement).

The catégoriés differ fundamentally, in that in the first, the decision

is made and then the structure is re-inforced, and in the latter, the
structure is re-inforced and then the decision is made. The first
category differs from the conventional decision directed category in that;

(1) The initial reference is extracted from the observations by
correlating the first observation with the next adjacent observation.

(2) Time-varying-weighted combination of the separated time slots

is carried out under optimization to minimize distance and dispersion,
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with a subsequent adjustment in the constraint to "maximize" the conver-
gence rate. An iterative format.: for the weighting recursion in esti-
mating the pulse waveform is developed.

The second category differs from previous work using the method of
moments, in that apriori knowledge of neither the pulse nor the noise
parameters is required.

The integration of the mixture resolving estimators into the detec-
tion operator structure constitutes an adaptive or learning decision
equation and signal processing algorithm. Extensive experimental studies,
via digital computef simulation, of the performance characteristics of
these signal processing algorithms have been carried out for the equi-
probable bi-polar case only. The dynamic and asymptotic performance -
characteristics of these algorithms havé been compared with simulation
established ‘performance characteristics of the conventional decision-
directed and Bayes matched filter algorithms.

The principal results, observations, and conclusions are as follows;

(1) Both the optimally weighted decision-directed and the moment

method categories converge for negative db. values of SNR at a rate con-

siderably higher than that of the conventional decision-directed category.

(2) The performance of the algorithms developed in this work is
bounded from above by the conventional decision directed algorithm over
the entire SNR range investigated and reasonably approaches the perform-
ance of the Bayes matched filter without the computational complexity of
the" formal Bayes mixture approach.

(3) For the optimally weighted, decision directed algorithm, over

the entire SNR range investigated; the weighting is dominated only by
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the observation stage, N, and the constraint coefficient, vy, and is thus

non-parametric in the mixture pulse waveform and noise parameters.

7-2. Recommendations for Future Investigation

It has been encouraging, in this relatively non-Bayesian approach,
to observe significant improvement over the conventional decision-
directed algorithm by processing with a formally developed weighting
iteration without the computational complexity of the formal Bayes mix-
ture requirement. In addition, it appears promising, in the areas of
digital data processing and estimation, to demand more specifics of the
output by placing the additional and particular conditioned, extremized,
and constrained properties upon the operators.

In work related to this area, it would be interesting to carry out
some formal study of threshold effects for a given weighting system and
to investigate specific tradeoff effects between dispersion, convergence
rate, acceleration, and perhaps other criteria.

An inspection of the underlying principles of both the conventional
and weighted decision directed philosophies, indicates that after class-
ification, the classified variables are never reviewed. It appears that
a lowering of the threshold, in terms of SNR, for reliable performance;
as well as a further increase in the rate of convergence with a reduc-
tion in asymptotic bias, might be achieved by some systematic, combina-
torial, re-classification of the early data. One posdibility woéuld be
to . reclassify all. observations up to stage NA’ which is .that time at
which the estimates of the elements for the structures (mean vectors,

covariance matrix) had stabilized, having attained their "asymptotic"
g




87

values. In that case, the reclassification of the early data,‘{gk}N s
using "asymptotic" values for the elements of the structure would A
correspond to classification with a filter mis-matched by the amount of
the "asymptotic" bias in the elements.

In as much as adaptive and learning algorithms can be formulated in
a Markov process context, it would appear to be worthwhile to consider
the development of a learning, adaptive, and mixture resolving algorithm
by working with the transition probability matrix equations and perhaps
constraining and extremizing the transition probabilities.

Finally, the development of mixture resolving estimating categories
in this thesis as well as in all work to date, insofar as a rather
intensive area investigation has revealed, assumes some form of time
slot synchronization. In general, this assumption is valid, from a
practical standpoint, only in digital communication systems employing a
transmitted reference, or other scheme, for binary digit synchronization.
Much more effort is required in investigating techniques and developing
references for locating, isolating, and separating "unknown events" in
more general mixtures such as discrimination radar, sonar, and seismic

echoes; and bio-electric signals.
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